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At its heart, this dissertation investigates the relationship between two of physics'

most important symmetries, di�eomorphisms and gauge transformations. Directed

by the study of the metric dependence of solutions to the instanton equation of

Yang-Mills theory on a smooth four manifold X, we construct a model of equivariant

cohomology of the space of gauge connections A and metrics Met(X) with respect to

the semi-direct product of gauge transformations G and di�eomorphisms Diff+(X).

Generalizing topologically twisted N = 2 super Yang Mills theory, we use our model

to present a new set of transformation laws and action which allow for the construction

of new di�eomorphism invariants of X associated to families of metrics. These are,

conjecturally, the fabled family Donaldson invariants. Surprisingly, we also identify

our model as a subsector of N = 2 twisted supergravity on a background with only

certain components of the gravitino activated. In addition, we provide perspective on

future directions for these developments.
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Introduction

Physics is the study of change. Typically, changes are measured through rates along

a world line, leading to our familiar notions of velocity, acceleration, jerks, snap,

crackle, pop, and all that. Mathematically, these rates require us to take a series

of derivatives with respect to a time variable along the world line. On a manifold,

the proper space to allow for a curved or topologically non-trivial universe, in�nite

iterations of derivatives in any combination of directions require the transition func-

tions between charts to be likewise in�nitely di�erentiable. This leads us to consider

smooth manifolds as candidates for the universe of a physical theory.

Naively, given a manifold X where the transition functions between charts are

merely continuous, one might expect that, if available, a choice of smooth structure

would be unique up to di�eomorphism. Shockingly, this is not always the case.

Indeed, in 1956, John W. Milnor constructed a smooth structure on the seven sphere

S7 which was homeomorphic, but not di�eomorphic to the standard Euclidean 7-

sphere [67]. It was further shown that there were a total of 28 non-equivalent smooth

structures on the homotopic S7 [48]. Such smooth manifolds which have a smooth

structure di�erent from the standard are called exotic. In dimensions less than four,

there are no exotic manifolds and in dimensions greater than four, there are at most

a �nite number . In four dimensions, where we seemingly live, things get wild.

For n ̸= 4, the manifold Rn has exactly one smooth structure, namely the one

speci�ed by the traditional �at Euclidean metric [79]. In an incredible twist to the

story, for R4 there are an uncountable number of exotic smooth structures [8, 39, 66].

Further, research into the possible smooth structures on closed, simply-connected,

smoothable manifolds seems to suggest that the presence of exotic structures is the

norm, not the exception [75]. For the case of the four sphere S4, this question,
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namely, �Does an exotic four sphere exist?� is the �nal open piece of the generalized

Poincaré conjecture, the so called �last man standing" among the problems of classical

geometric topology [33]. Indeed, in stark contrast to every other dimension, there is no

known classi�cation of smooth structures for even a single smoothable four manifold.

Despite the unruliness of four manifolds, some features have been tamed. In fact,

it is nearly settled as to which simply-connected closed four manifolds allow for a

smooth structure [23, 36, 41].1 This progress was in large part due to the incredible

work of Simon K. Donaldson, when, in 1983, he introduced the eponymous Donaldson

polynomial invariants. Letting X be a closed, oriented, smooth four manifold, we can

write the generating function for the polynomials of X as

ZD[g, p, s] =
∑
ℓ,r≥0

pℓ

ℓ!

sr

r!
Pℓ,r

D , (0.1)

where g is a metric on X and p and s are formal variables associated to a point

and surface in X respectively, thus, for a �xed degree, de�ning a polynomial on

H0(X) ⊕ H2(X). Here the Pℓ,r
D are rational numbers which are independent of the

metric on X, so long as there is a su�ciently large vector space of self-dual two form,

that is, for b+2 (X) > 2. Hence, if computed, these invariants provide a potential

method of distinguishing between di�erent smooth structures.

But what is it that the Donaldson polynomials are actually computing? Before

we answer this question, let us take a step back to understand topological invariants

in general. If two manifolds can be deformed into each other, the invariants of each

manifold will be the same, as is often parlayed into the image of a confused topologicist

unsure at breakfast whether to drink out of a donut or take a bite out of his co�ee

cup; to them, the two objects are indistinguishable on account of having only one

1We make this statement precise in Section 0.1.2 below.
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hole. Following this intuition, the topological invariants of a manifold should count

something, such as holes. Even the dimension of a manifold is a topological invariant,

as, no matter how hard one tries, no one has or will ever be able to deform a manifold

into a higher dimension. If one leaves their lower dimensional manifolds behind and

makes it into these higher dimensions, you'll �nd higher dimensional holes, such as the

one inside of a sphere. Unfortunately just counting holes is insu�cient to distinguish

two smooth manifolds i.e. the number of holes is not a complete invariant. Indeed,

both S7 and an exotic S7 each have only one �seven dimensional hole,� but they are

not the same smooth manifolds.

Thankfully there are myriad other topological invariants. Some are Z2-valued and

only give a �yes� or a �no,� such as orientability, which measures a manifold's ability

to have a well-de�ned notion of handedness. On an un-orientable surface, such as the

Möbius strip, a left-handed person is just a right-handed person who needs to go for

a walk. Similarly, a theory of physics on such a surface would not allow for chiral

particles, which leads us to a result: Because we �nd chiral particles in our universe,

we must live on a oriented manifold. Here, an observation in a physical theory has

just told us something about the world it lives in.

Extrapolating this approach, we are led to ask, what can a physical theory teach us

about the topology of the underlying spacetime? The answer, it turns out, is precisely

the one we initially sought. One of our more sophisticated theories is the Yang-Mills

theory, which is the overarching �eld theory of both quantum electrodynamics and

quantum chromodynamics and forms the basis of our understanding of the Standard

Model. The classical solutions to its equations of motion generalize the classical

Maxwell equations and its quantum �eld theory gives all the beautiful machinery of

the strong and electroweak forces of nature. Quantum mechanically, there is another

type of solution, namely, a instanton. Instantons are topologically non-trivial �eld
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con�gurations that are localized in both space and time and minimize the action of

the Yang-Mills theory . This is to be juxtaposed with the notion of a particle which

is only localized in space, and, as an object in spacetime, is a worldline. In constrast,

to an observer, instantons are blips that last for only an instant. Moreover, Wick

rotating over to Euclidean space, the number of possible instanton solutions depends

on the manifold X. This leads us to our answer, the Donaldson polynomial invariants

are, for a �xed number of instantons, counting the number of ways these instantons

can all be put on the manifold X!

Donaldson's work was motivated by physics, but surely our physical theory of

Yang-Mills on a manifold X will depend on the metric? How can we build a theory

which is �topological� and ensure that when we ask the physics to count the instanton

solutions it won't get stuck on a choice of metric? In 1988, Edward Witten, in a deft

maneuver guided by the intuition of a physicist, discovered a method to �twist� the

�elds of the four dimensional N = 2 supersymmetric Yang Mills theory with gauge

group G and arrived at the notion of a cohomologically topological �eld theory [85].

This theory is equipped with a di�erentialQ that squares to zero on all gauge invariant

functionals of the �elds. With this di�erential, we can write action of the theory SUV

as

SUV = Q(VUV) +
iτ0
16π

∫
X
TrFA ∧ FA, (0.2)

where VUV is a functional of the twisted vector multiplet �elds, FA is Yang Mills �eld

strength, and τ0 is the complex coupling constant. Note that this is the sum of a

Q-exact term and a topological term. Further, the stress energy tensor Tµν , de�ned

as

δgSUV =
1

2

∫
X
d4x

√
gδgµνTUV

µν , (0.3)
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for an in�nitesimal change gµν −→ gµν + δgµν , can be written as

TUV
µν = QΛUV

µν . (0.4)

We can then de�ne the partition function of this theory as

ZW[g] =

∫
[dVM]e−SUV . (0.5)

where we have conducted the path integral over the twisted vector multiplet �elds.

Noting that Q originates from the supersymmetry of the untwisted theory, we see

that2

δgZW[g] =

∫
[dVM]

(
1

2

∫
X
d4x

√
gδgµνTUV

µν

)
e−SUV ,

=

∫
[dVM]Q

(
1

2

∫
X
d4x

√
gδgµνΛUV

µν e
−SUV

)
= 0.

(0.6)

Therefore, the partition function is formally independent of the choice of metric on

X, that is, the theory is topological!

Moreover, the theory is equipped withQ-closed, gauge invariant observables. On a

simply-connected, closed manifold, we have two observables of note, the 0-observables

O(0)(p0) associated to a point p0 ∈ X and the 2-observables O(2)(Σ) associated to a

closed surface Σ ⊂ X. These choices, p0 and Σ, only depends on the homology class,

up to Q-exact terms, which themselves decouple from the theory [52]. We can write

2We point the eager reader to (0.118)-(0.123) for a more careful treatment of this important
result.
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the expectation value of the generating function of these observables as

ZW [g, p, s] =

∫
[dVM]epO

(0)(p0)+sO(2)(Σ)e−SUV

=
∑
ℓ,r≥0

pℓ

ℓ!

sr

r!

∫
[dVM]

(
O(0)(p0)

)ℓ (O(2)(Σ)
)r
e−SUV .

(0.7)

The beauty of this theory is that, up to an overall constant prefactor, we have

ZD[g, p, s] = ZW[g, p, s]. (0.8)

Henceforth, we shall then only refer to the uni�ed Donaldson-Witten partition func-

tion ZDW.

Were this the only bene�t of the physics interpretation, one would be excused

for marvelling and moving on, but there's more! In 1994, together with Nathan

Seiberg, Witten provided an exact low energy e�ective action for the untwisted N =

2 supersymmetric Yang Mills theory for SU(2) [76, 77], allowing for approximate

computations of correlation functions. Here, the physics is mapped from the high

energy UV theory to the low energy IR theory, where the dynamics are comprised

of �uctuations about the quantum vacua. In the IR, the gauge symmetry breaks

to U(1), though at certain points in the moduli space of quantum vacua, massless

particles enter the story. Turning to the twisted story, ZDW is independent of the

metric for choices of X with b+2 > 1, and thus one can scale to long length scales,

or, correspondingly, low energy limits. Since the twisted theory is topological, this

mapping is not just an approximation, but an exact correspondence.

Led by the tools of physicists, we then arrive at the outcome that the Donaldson-

Witten invariants can be computed as an integral over the moduli space of quantum

vacua for the U(1) twisted Seiberg-Witten theory. Such vacua are parameterized by
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the expectation value of the O(0)(p0) observable of the theory, which is denoted u.

Further, in 1997, Gregory W. Moore, with Witten, conducted the explicit integral

over the u-plane of these vacua, leading to the relation

ZDW =
∑
u=±1

ZuSW + Zu, (0.9)

where ZSW are contributions from the points on the u-plane where there are monopole

solutions and Zu is the so-called u-plane integral [71]. For b+2 (X) > 1, they showed

that Zu = 0, and thus the Donaldson-Witten invariants can be written entirely in

terms of monopole solutions, greatly simplifying their computation. Meanwhile, at

b+2 (X) = 1, each of the above terms is only piecewise constant over the space of

metrics, leading to the phenomenon of wall crossing, where the values jump across

certain domain walls.

This is only the tip of the iceberg, as after this work of exchanging the messy �non-

abelianness� of Donaldson theory for the tractable abelian nature of Seiberg-Witten

theory, many of the old theorems of four manifold theory were given new, simpler

proofs and the connection further inspired entirely new directions of study [25, 70].

This exchange between mathematicians and physicists is rightly heralded as one of

the greatest success stories in the burgeoning �eld of physical mathematics [5, 68]

This �eld is characterized by its use of the techniques and intuitions of quantum �eld

theory and its cousins to pose and prove concrete problems in mathematics. The goal

of this thesis is to continue this tradition.

An early remark by Donaldson [24] saw �t to consider a further generalization

of his invariants, namely to generalize them to higher degree forms on the classify-

ing space of orientation-preserving di�eomorphisms, BDiff+(X). To understand this,

consider ZDW as function over the space of metrics on X, denoted Met(X), which
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is, for b+2 (X) > 1, invariant under orientation preserving di�eomorphisms. Hence,

putting aside for the moment issues of singularities, we have ZDW as a function on

the space Met(X)/Diff+(X), which contains the same topological data as BDi�+(X).

This immediately introduces the notion of considering higher degree di�erential forms

on Met(X)/Diff+(X), and, along with an appropriate di�erential, the cohomology

H∗(Met(X)/Diff+(X)). Then, integrating such an n-forms over an n-paramter family

of metrics in Met(X) would yield family Donaldson invariants.

Returning to those issues of singularities in the quotient space �Met(X)/Diff+(X), ”

we are brought to the mathematical theory of equivariant cohomology, which is de-

signed precisely to tackle the cohomology of manifolds with a (not necessarily free)

group action. As we will explore in detail, the original densities of the Donaldson-

Witten invariants are themselves elements of equivariant cohomology on the space of

gauge connections A with respect to the group of gauge transformations G, that is,

elements of HG(A), where Q plays the role of the di�erential3. In order to explore our

family Donaldson invariants, we must extend this model of equivariant cohomology

to the product space

M = A×Met(X) (0.10)

with the action of the group

G = G ⋊ Diff+(X). (0.11)

Then, denoting the di�erential for the cohomology HG(M) by Q,4 we will extend the

original Q-closed action SUV to a Q-closed action SUV. The generating function for

3With the addition of two modules over HG(A), or contractible pairs, which we will discuss in
due time.

4For obvious reasons, will never refer to the rational numbers as Q in this work.
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our family Donaldson invariants is then de�ned as

Z[g,Ψ,Φ] =

∫
[dVM]e−SUV . (0.12)

Here, g ∈ Met(X), Ψ ∈ Ω1(Met(X)), and Φ ∈ Vect(X) are the generating �elds for the

complex ofHDiff+(X)(Met(X)), which is equipped with the di�erential d. From this per-

spective, integrating over the vector multiplet �elds is equivalent to projecting down

from our total complex of the HG(M) model to the base complex of HDiff+(X)(Met(X)).

Since QSUV = 0, a simple chain map argument reveals that

dZ[g,Ψ,Φ] = 0, (0.13)

Moreover, expanding our generating function in degrees, we have

Z[g,Ψ,Φ] =
∞∑
m=0

Z[m] (0.14)

and due to the fact that d is homogeneous of degree one, we �nd

dZ[n] = 0, (0.15)

for all n. Here, each Z[n] is degree n element of HDiff+(X)(Met(X)), and thus we

can integrate it over an n-parameter family of metrics to obtain the fabled family

Donaldson invariants. Of course, by construction Z[0] = ZDW[g], where the right hand

side is the original Donaldson-Witten invariants without the insertion of observables.

Surprisingly, we can also obtain these invariants from a physically motivated di-

rection. To do so, consider four dimensional N = 2 Euclidean supergravity, as in [17].

In joint work with Moore, Ro£ek, and Saxena to appear [12], we will show that one
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is able to �rst twist and truncate this theory and then by restricting to a symmetric

gravitino background arrive at a consistent theory of twisted supergravity. Moreover,

the �elds and the transformations laws of this theory exactly coincide with those of

our model of HG(M) and its modules! Further, using the chiral density formula and

superconformal tensor calculus in supergravity, one obtains an action StUV which is

equal to SUV up to a Q-exact term!

Hence, herein we hope to open the door to an exciting new chapter in the con-

tinued dialogue between physics and mathematics in our quest to understand four

manifolds. With this view ahead, we also provide our initial investigations into the

inclusion of family observables. Finally, we also provide a IR formulation of this entire

story, so that future work might repeat the analysis of Moore and Witten in [71] and

understand the expected wall-crossing for these invariants on manifolds with b+2 > 1.

The structure of this work is as follows. In order to generalize, we must �rst

settle that which is to be extended, so we begin with Section 0, where we conduct

a crash course in basic four manifold theory, then move to a likewise concise review

of N = 2 supersymmetry in four dimensions. We conclude the preliminaries by

conducting Witten's twist and reconstruct the Donaldson-Witten invariants, with

an emphasis on equivariant cohomology and the Mathai-Quillen formalism. Section

1 is the heart of the paper, wherein we carefully construct the Cartan model of

equivariant cohomology for HG(M), include two modules, and then, in a lengthy

excursus, show that this model is equivalent to truncated twisted supergravity on a

symmetric gravitino background. Section 2 presents our generalized construction of

both a UV action SUV and a IR action SIR. We further take another excursus into

twisted supergravity, and present its construction of the action and then show that

it is equal to our own up to a Q-exact term. Section 3 presents the hero of our story,

the family invariants. After some light exploration in their features, we then extend
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our gaze to the horizon, where in Section 4 we present preliminary investigations into

the inclusion of observables, the computation of our invariants, and the prospects of

wall-crossing phenomenon. We then conclude.

We will assume familiarity with certain aspects of di�erential topology, algebraic

topology, as well as quantum �eld theory.5 For the truly uninitiated, we point to

the beautiful book by Alexandru Scorpan [75] for a mathematical approach and the

likewise wonderful (and shorter!) text of Jose Labastida and Marcos Mariño [53] for

a more physical approach. We would also be unduly remiss to not mention the expert

reviews [10] and [70].

5To the level that, math-wise, every item in the bulleted list below is understood, and physics-
wise, the discussion in the introduction about Seiberg-Witten theory was understood. We will try
to be as curt as possible without truly losing any reader who is at the position the author was when
they began their graduate studies.
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0 Foundations

Our story features a cast of main characters. In the leading role, we always take X to

be a closed, oriented, smooth four manifold. In addition, we hold here for reference,

the other main players:

� G : Gauge group, i.e. a compact semisimple Lie group.

� g : Lie algebra of G.

� P : Principal G-bundle P → X.

� A : Space of G-connections on P .

� G : Group of gauge transformations, i.e. the group of �bre preserving automor-

phisms of P .

� LieG : Lie algebra of G.

� Met(X) : Space of Riemannian metrics on X.

� Diff+(X) : Lie group of orientation-preserving di�eomorphisms of X.

� diff(X) : Lie algebra of Diff+(X).

� M = A×Met(X).6

� G = G ⋊ Diff+(X).

6For ease of notation and not to be confused with the Monster group.



13

0.1 Four Manifold Theory

0.1.1 Basics

A topological four manifold is a topological space7 X which is locally R4, that is, for

every point p0 ∈ X there is an open neighborhood U ⊂ X of p0 and a homeomorphism

(a continuous map which has a continous inverse) φU : U −→ φU(U) ⊂ R4. These

maps are called charts, though often the de�nition is extended to refer to the domains

as well, and often written (U,φU). Given two non-disjoint neighborhoods U and V ,

we have a homeomorphism from φU(U ∩V ) to φV (U ∩V ) given by φV ◦φ−1
U , which we

call the transition function. We consider two topological manifolds to be equivalent

as topological manifolds if there exists a homeomorphism between them. Further,

we say a topological four manifold is closed if it both compact and has no boundary.

Finally, a closed topological four manifold is said to be orientable if its top homology

H4(X,Z) is isomorphic to the integers Z. Here a choice of generator is an orientation,

which gives one an oriented manifold. We restrict our entire discussion to connected,

closed, oriented manifolds.

A smooth four manifold is a topological four manifold with a collection of charts

so that every transition function is smooth (di�erentiable to all orders). We say a

topological manifold X is smoothable if there is a selection of its charts which cover

X such that every transition function is smooth. We call such a selection a smooth

structure. We consider two smooth manifolds to have equivalent smooth structure

is there exists a di�eomorphism (a smooth function which has a smooth inverse)

between them.8 Note that these de�nitions allow for two smooth manifolds X and Y

to be equivalent as topological manifolds, but di�erent as smooth manifolds.

7Which needs to be both separable and Hausdor�, which to a physicists need only mean that it
isn't a pathological nightmare.

8Note that a smooth homeomorphism need not be a di�eomorphism. For example consider
f : R −→ R given by f(x) = x3, whose inverse is not di�erentiable at 0.
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Figure 1: If {φ} and {ϕ} are two independent collections of charts such that all
transition functions {φV ◦ φ−1

U } and {ϕV ◦ ϕ−1
U } are smooth, then they are both

individually smooth structures on X. If every {ϕV ◦ φ−1
U }, as in the dotted map, is

smooth, then the two smooth structures are equivalent. If a single one is not, then
the two smooth structures are di�erent.

Following these de�nitions, one is immediately presented with the question of

classi�cation. The question comes in three parts, namely

� First: What is the classi�cation of topological four manifolds?

� Second: What are the conditions for a topological four manifold to be smooth-

able?

� Third: What is the classi�cation of smooth structures on smoothable four

manifolds?

The �rst question is, in general intractable, as given any �nitely presented group
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H, one can construct a topological four manifold X with its fundamental group

π1(X) = H. The question of distinguishing between two �nitely presented groups

is known as the word problem, and it's unfortunately undecidable [74]. So much

for generality. Thankfully, once one restricts to simply-connected topological four

manifolds, the classi�cation has been settled. Thus we turn to the intersection form.

0.1.2 Intersection Form

The most basic topological invariants of any manifold are its homology groups,

Hn(X,Z), and cohomology groups Hn(X,Z). They are abelian groups and the rank

of the nth homology group is called the nth Betti number of X, denoted by bi. More-

over, when X is simply-connected, both its homology and cohomology groups are

free, so at this point we all but turn our backs to non-simply-connected manifolds.

We can then de�ne the intersection form QX as the symmetric bilinear form

QX : H2(X,Z)×H2(X,Z) −→ Z, (0.1)

de�ned as the cup product between 2-cocycles. Unfortunately, cup products are con-

fusing, so let's recall Poincaré duality. Since the manifolds we consider are oriented,

we have the canonical isomorphism

Hn(X,Z) ∼= H4−n(X,Z). (0.2)

In four dimensions, this gives us an isomorphism between H2(X,Z) and H2(X,Z),

which leds to a geometric picture of QX . If Sα and Sβ in H2(X,Z) are representatives

duals to 2-cocycles α and β, then the intersection form can de�ned as the signed
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intersection number of the surfaces Sα and Sβ,

QX(α, β) = Sα · Sβ. (0.3)

In another salute to Poincaré duality, QX is unimodular, that is, it has det(QX) = 1.

Therefore QX is a symmetric integral unimodular bilinear form. It is important to

stress that we are working over the integers, and thus a change of basis is an element

of GLb2(X,Z), not GLb2(X,R). For this reason, QX is an interesting invariant.

The intersection form itself has a number of algebraic invariants. First, its rank

is simply b2(X). Next, we can diagonalize the matrix QX over the real numbers R

and count the number of positive and number eigenvalues. We call them b+2 and b−2

respectively. The signature of QX is then de�ned as

sign QX = b+2 − b−2 . (0.4)

We say QX is de�nite if either b+2 or b−2 are zero, and inde�nite otherwise. Lastly, we

have the parity, which is said to be even if, for all classes α ∈ H2(X,Z), QX(α, α) ∈

2Z, and odd otherwise.

Turning to the classi�cation of possible intersection forms, there has been won-

derful success for the inde�nite case. Here we have Serre's Classi�cation Theorem,

which tells us that two inde�nite integral symmetric bilinear unimodular forms are

isomorphic if they have the same rank, signature, and parity [78]. Concretely, this

means that if QX is inde�nite and odd, then it is isomorphic to

m[+1]⊕ n[−1]. (0.5)
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and if it is even, then it is isomorphic to

±mE8 ⊕ nH, (0.6)

where m,n ∈ Z+ and

E8 =



2 −1 0 0 0 0 0 0

−1 2 −1 0 0 0 0 0

0 −1 2 −1 0 0 0 0

0 0 −1 2 −1 0 0 0

0 0 0 −1 2 −1 0 −1

0 0 0 0 −1 2 −1 0

0 0 0 0 0 −1 2 0

0 0 0 0 −1 0 0 2



, and H =

0 1

1 0

 . (0.7)

De�nite forms on the other hand are far more complicated. In the even case, van

der Blij's lemma indicates that the rank must be a multiple of 8 [83]. At rank 8, we

have just E8, two at rank 16, the 24 Niemeier lattices at rank 24, but then suddenly

more than eighty million at rank 32. The landscape is even less clear on the odd side.

Thankfully, for every �xed rank, there is only a �nite number of integral symmetric

bilinear unimodular forms up to isomorphism.

Having some semblance of algebraically-possible intersection forms, one asks which

ones are realized as the intersection forms for topological four manifolds. The answer,

it turns out, is all of them. More so we have Freedman's Classi�cation Theorem

[32, 34]. It states that, for any integral symmetric unimodular form Q, there is a

closed simply-connected topological four manifold that has Q as its intersection form.

This further divides into two cases:
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� If Q is even, then there is exactly one topological four manifold up to homeo-

morphism.

� If Q is odd, then there are exactly two such topological manifolds up to home-

omorphism, at least one of which is not smoothable.

Hence, we have answered the �rst of our original three questions. Let us now turn to

smooth topological four manifolds.

0.1.3 Donaldson Invariants

Let X be a closed, oriented, smooth four manifold. We will also continue to restrict

to the simply-connected case. With a smooth structure in hand, we can now speak

of the tangent bundle TX, the cotangent bundle T ∗X, and the space of di�erential

forms Ω∗(X). Further, with the exterior derivative d, we can speak of the de Rham

cohomology H∗
DR(X,R) of X, which is taken over the real number R. In our case,

where there is no torsion in H∗(X,Z), we will view H2
DR(X,Z) as an integral lattice

inside of H2(X,R). With this perspective, we can write the intersection form on two

2-cocycles, represented by two-forms, as

QX(α, β) =

∫
X
α ∧ β. (0.8)

A fundamental result of di�erential geometry is that every smooth manifold has

a Riemannian metric g [55]. Here, g assigns to each point p ∈ X a positive-de�nite

inner product on the tangent space TpX. Note that a single smooth manifold X can

have many di�erent metrics, and we denote the space of all possible ones, namely the

moduli space of metrics on X, by Met(X). This space is topologically uninteresting

on its own right, since it is contractible.9

9To see this, take any two g0, g1 ∈ Met(X) and consider the path gn = ng0 + (1 − n)g1 for
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With a metric (and an orientation), we can de�ne the Hodge star operator ⋆. In

four dimensions, this is a map ⋆ : Ωn(X) −→ Ω4−n(X) which squares to one, hence

has eigenvalues ±1. In our conventions, for ω ∈ Ω2(X), in a coordinate basis, we can

write

⋆ωµν =
1

2

√
gϵµνρσg

ρρ′gσσ
′
ωρ′σ′ , (0.9)

where we write
√
g for the square-root of the determinant of g. Our Levi-Cevita

symbol holds no metric dependence, but we can see the Hodge star's explicit de-

pendence on the metric. Since ⋆ is an involution on Ω2(X) there is a splitting into

self-dual two-forms Ω+(X) with eigenvalues +1 and anti-self-dual two forms Ω−(X)

with eigenvalues −1. Given any two-form ω, we will use an index ± to denote its

self-dual or anti-self-dual parts respectively. Thus we have

ω±
µν =

1

2
ωµν ±

1

4

√
gϵµνρσg

ρρ′gσσ
′
ωρ′σ′ . (0.10)

This splitting descends in de Rham cohomology to a splitting of H2
+(X,R) and

H2
−(X,R). Thus, considering the de�nition of integration over di�erential forms, we

have

QX(ω
+, ω+) =

∫
X
ω+ ∧ ω+ =

1

2

∫
X
d4x

√
gω+

µνω
µν
+ > 0, (0.11)

and

QX(ω
−, ω−) =

∫
X
ω− ∧ ω− = −1

2

∫
X
d4x

√
gω−

µνω
µν
− < 0. (0.12)

Further, ω+ ∧ ω− = 0. Hence, we see that H2
+(X,R) is a maximal positive de�nite

subspace for QX and H2
−(X,R) is a maximal negative de�nite subspace for QX. This

n ∈ [0, 1]. Since each gn is still a positive-de�nite inner product, it readily follows that Met(X) can
be contracted down to a single point.
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means that we have the identi�cation

b+2 (X) = dim H2
+(X,R) and b−2 (X) = dim H2

−(X,R). (0.13)

With a smooth structure, we can also delve into gauge theory, which studies gauge

connections on various types of �bre bundles, in particular principal bundles.10Let

G be our gauge group, namely a compact Lie group (typically G = SU(2) or SO(3))

with Lie algebra g. We then take P → X to be a principal G-bundle, with a space

of G-connections A(P ). Here A is an a�ne space, where the di�erence of two of its

elements is in Ω1(X, adP ), that is, a one form on X with values in the adjoint bundle.

Given a connection A ∈ A(P ), we can de�ne a gauge covariant derivative11

DA = d+ A, (0.14)

and compute its curvature, or, in physics parleance, its �eld strength, as

FA = dA+ A ∧ A, (0.15)

and, in local coordinates, as

Fµν = ∂µAν − ∂νAµ + [Aµ, Aν ]. (0.16)

Here, the brackets are the Lie brackets of g. In addition, we have the group of �bre

preserving automorphisms of P , which we call the group of gauge transformations G.
10For in depth reviews, speci�cally in four dimensions, we point the reader to the texts [26, 30, 35].
11Mathematicians will often reserve the term connection for the di�erential DA and call A a local

connection 1-form. This is done since A transforms inhomogenously under gauge transformations,
while DA transforms covariantly. We follow the nomenclature of physicists.
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For ϵ ∈ LieG, we have the left-action on the connection and curvature as

δϵA = [ϵ, A]− dϵ and δϵFA = [ϵ, FA]. (0.17)

We can fully classify principal SU(2)-bundles by their second Chern class k = c2(P ) ∈

Z. Using Chern-Weil theory, this integer can be written as the integral

k = − 1

16π2

∫
X
TrFA ∧ FA, (0.18)

where the trace is normalized so that each possible integer k can be realized. We

shall refer to the number k as the instanton number. On the other hand, one can also

consider the integral

SYM =
1

2

∫
X
TrFA ∧ ⋆FA =

1

4

∫
X
d4x

√
gTr[FµνF

µν ], (0.19)

which we call the Yang-Mills functional or Yang-Mills action. Note, thanks to the

trace, that both SYM and k are of course invariant under the action of G.

It is natural to consider the minimization of SYM. To do so, note that we can

write

SYM =
1

2

∫
X

[
TrF+

A ∧ F+
A − TrF−

A ∧ F−
A

]
, (0.20)

and also

k = − 1

16π2

∫
X

[
TrF−

A ∧ F−
A + TrF+

A ∧ F+
A

]
. (0.21)

Hence, for k = 0, SYM has absolute minima on �at connections FA = 0, for k < 0,

on connections which satisfy F−
A = 0, and for k > 0, on connections with F+

A = 0.

The di�erence between the cases of k < 0 and k > 0 is simply due to a choice of

orientation, so we restrict our attention to k > 0. Thus we are interested in solutions
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to

F+
A = 0, (0.22)

which is knwon as the instanton equation. Note that F+
A = 0 implies that ⋆FA = −FA,

so that solutions are the so-called anti-self-dual connections.12 Further, we only care

about connections up to equivalence under gauge transformations, so we need only

consider equivalence classes of connections [A] ∈ A/G. Thus, the space of interest is

the instanton moduli space

Mk,g =
{
[A] ∈ A/G

∣∣F+
A = 0

}
, (0.23)

where we specify a �xed metric g, due to the Hodge star's dependence on a met-

ric. Mk,g is, in general, non-compact, and due to the quotient by G, also singular.

Thankfully, for b+2 > 0 and a generic metric, the moduli space for G = SU(2) is a

�nite-dimensional orientable smooth manifold of dimension

dim Mk,g = 8k − 3(1− b1 + b+2 ). (0.24)

Working more carefully, with the singularities at the forefront, let us de�ne the trivial

bundle Eg −→ A with total space

Eg = A× Ω2,+
g (X, adP ). (0.25)

We then de�ne a section s of Eg

s(A) = F+
A . (0.26)

12Connections are locally one-forms, so cannot be themselves anti-self-dual. When we call a
connection anti-self-dual, we are commenting on the properties of its curvature.
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It is clear then that solutions to the instanton equation are the zero locus of s, namely

s−1(0). Further, in order to only consider solutions up to gauge transformations,

have need to quotient s−1(0) by G. Unfortunately for us, there are connections in

A that are �xed under some gauge transformations, so the resulting quotient will

have singularities at these points. Ignoring the center of the gauge group, when

a particular connection is �xed by any elements of G, we say it is reducible, and

irreducible otherwise. For the case of SU(2), a reducible connection will have an

isotropy group isomorphic to U(1), and its adjoint bundle will split into a direct sum

of U(1) bundles. To a physicist, this is the phenomenon of the gauge symmetry

breaking.

Inspecting the de�nition δϵA in (0.17) and DA in (0.14), we can identify reducible

connections by whether or not there exists ϵ ∈ LieG that satisfy

δϵA = −DAϵ = 0. (0.27)

Locally on A, we can understand DA here as a map

DA : LieG −→ TAA, (0.28)

so that a connection is irreducible if and only if it DA has a trivial kernel, KerDA = 0.

Likewise, the image of DA can be considered as the gauge orbit of the connection A.

We have a G invariant metric on A, so we can further de�ne the adjoint of this

operator

D†
A : TAA −→ LieG. (0.29)

It then follows that the tangent space at a point A ∈ A will decompose into its gauge
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orbit and the kernel of D†
A, so we write

TAA = ImDA ⊕KerD†
A. (0.30)

Together, this means the neighborhood of a irreducible connection in A/G will be

modeled by KerD†
A, while the one for a reducible connection will be KerD†

A quo-

tiented by the isotropy group of elements ϵ ∈ G with DAϵ = 0.

Next, we want to bring the section s(A) back into the story. Suppose, we have a

irreducible connection A which satis�es s(A) = F+
A = 0. Deforming this solution by

ψ ∈ Ω1(X, adP ) (since A is an a�ne space), in order to remain on the zero locus of

s(A) we require that F+
a+ψ = 0. Hence, to �rst order, we have

(DAψ)
+ = 0. (0.31)

The left hand side of this condition can be expressed by the map13

∇s : TAA −→ Ω2,+
g (X, adP ) (0.32)

so that tangent vectors in Ker∇s are precisely those that maintain the instanton

equation. Since the gauge orbits of A were given by ImDA we then conclude that for

a representative irreducible connection [A] ∈ A/G, we have

T[A]Mk,g = Ker∇s ∩KerD†
A. (0.33)

13We must be careful not to con�ate the symbol ∇ here with the metric covariant derivative
∇ which will appear latter. We would have written D+

A , but this leads to some rather perverse

equations when it meets with D†
A.
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This space can be realized as the kernel of the map

F = ∇s⊕D†
A : TAA −→ LieG ⊕ Ω2,+

g (X, adP ). (0.34)

All of this technology can be condensed into the Atiyah-Hitchin-Singer complex [2]

0 −→ LieG DA−→ TA
∇s−→ Ω2,+

g (X, adP ) −→ Coker∇s −→ 0, (0.35)

where the cokernel is de�ned as Coker∇s = Ω2,+
g (X, adP )/Im∇s. In our work, it is

generically the case that Coker∇s = 0.14 This is a chain complex,15 as we compute

(∇s ◦DA)ϵ = [F+
A , ϵ] = 0, (0.36)

since [A] ∈ Mk,g, where F
+
A = 0. Taking the homology groups of the complex, we

have its index given by

IndexAHS = − dimH0 + dimH1 − dimH2, (0.37)

where H0 = KerDA, H
1 = Ker∇s/ImDA, and H

2 = Coker∇s. Since, in this case

dimCokerD†
A = dimKerDA, we have

Index(F) = dimKerF− dimCokerF

= dimKer∇s+ dimKerD†
A − dimCoker∇s− dimCokerD†

A

= dim(Ker∇s/ImDA)− dimCoker∇s− dimKerDA = IndexAHS (0.38)

14We will use this word �generically,� quite often. Technically, it means �on all but a set of measure
zero,� and intuitively it means �pretty much always.�

15This is to say that the composition of two consecutive maps in the diagram is always zero.
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This index is also called the virtual dimension of the moduli space for the following

reason. When [A] is irreducible (and Coker∇s = 0), this is exactly the dimension

of the T[A]Mk,g and hence the dimension of Mk,g in (0.24)! On the other hand,

when there are reducible connections, H0 ̸= 0 and the index decreases, as does the

dimension of T[A]Mk,g, which is exactly what we expect at singularities. Fortunately

for the work here, we will rarely talk about reducible connections and thus moving

forward we write A/G with the nuances therein understood.

Having settled some of various objects that can be built on smooth manifolds,

we are ready to return to our second main question, namely which topological four

manifolds are smoothable. In 1982, following investigations into the nature of the

instanton moduli space, Donaldson provided a partial answer in his eponymous Don-

aldson's Theorem [23]. It states that if a topological four manifold X with a de�nite

intersection form QX is smoothable then it must be the case that

QX = m[+1] or QX = m[−1], (0.39)

for m ∈ Z+. Combining this result with Freedman's classi�cation, we can de�nitively

state that any two smooth simply-connected four manifolds are homeomorphic if and

only if their intersection forms have the same rank, signature, and parity.

While a proof of Donaldson's Theorem is beyond the scope of this thesis, it relies

on a careful analysis of the instanton moduli spaceMk,g of X. Continuing his analysis

of instantons, Donaldson also introduced his polynomial invariants of X, which them-

selves, for b+2 > 1, are independent of the choice of metric. In other words, they are

full di�eomorphism invariants and only depend on a choice of smooth structure. It is

with such objects that one might hope to solve our still widely open third question

of how to classify smooth structures.
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The Donaldson polynomial invariants are themselves integrals of cohomology

classes on the (compacti�ed) instanton moduli space. These cohomology classes are

parameterized through the Donaldson map which takes

µD : Hn(X,R) −→ H4−n(Mk,g). (0.40)

We then de�ne the Donaldson polynomial invariants as

Pℓ,r
D (p0,Σ) =

∫
Mk,g

µD(p0)
ℓµD(Σ)

r, (0.41)

for surface Σ ∈ H2(X,R) and p0 ∈ X. We can also introduce formal variables p and

s and write the Donaldson generating function as

ZD[g, p, s] =
∑
ℓ,r≥0

pℓ

ℓ!

sr

r!
Pℓ,r

D , (0.42)

As noted above, for b+2 > 1 the Pℓ,r
D are constant rational numbers which are inde-

pendent of the choice of metric. Therefore, if two smooth structures on a smoothable

four manifold give di�erent values of Pℓ,r
D , then it is clear that they have di�erent

smooth structures. Unfortunately, when b+2 = 1, they are only piecewise constant

rational numbers on Met(X), and change value over walls of codimension one. To

make matter worse, these invariants vanish completely on �half� of all smooth four

manifolds. To see this, note that when b+2 > 0, the dimension of Mk,g in (0.24) for

a generic metric is even only when b1 + b+2 is also even. Since the integrand of the

invariant is a (4ℓ + 2r)-form on Mk,g it is clear that Pℓ,r
D = 0 when b1 + b+2 is odd

i.e. for �half� of all smooth manifolds. We do not take this as a failure, but rather

an opportunity to search for generalizations of these beautiful objects. But �rst, in
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order to practice good physical mathematics we need to understand how the current

invariants are understood physically.

0.2 N = 2, d = 4 Super Yang Mills

Ultimately, we will show that the Donaldson generating function is a correlation

function for observables in the topological twisted N = 2 super Yang-Mills theory. At

present these words may have little meaning, so we begin with the simplest: �super.�

0.2.1 Supersymmetry

In the 1960s, there were a series of attempts to enlarge the number of symmetries

in the Poincaré algebra in order to account for, at the time, unknown physical phe-

nomena. Most of these attempts were put to rest by the famous Coleman-Mandula

Theorem [9]. As a weighty no-go, it states that the possible symmetries of a well-

behaved local relativistic quantum �eld theory are restricted to a direct product of the

Poincaré group and a compact Lie group. Therefore the only allowed generators of

symmetries are the energy-momentum operators Pµ, the Lorentz rotation generators

Mµν , and some Lorentz invariant scalar charges in the Lie algebra of the compact Lie

group, say B. At its core, the theorem prevents the non-trivial mixing of space-time

and internal symmetries.

Fortunately for the world, or, at the very least, imaginary worlds, one can side-

step the restrictions of Coleman-Mandula by relaxing one condition. By allowing for

symmetries that transform bosonic �elds into fermionic ones and vice versa, one is

permitted to include new symmetry generators that are in a spinor representation of

the Poincaré group. Mathematically, this means we are considering Lie superalgebras

as opposed to just a Lie algebra. These new spinorial objects are call supercharges



29

and generate supersymmetries.16

In four dimensions, there are two inequivalent two dimensional spinor representa-

tions of the Poincaré group, which are called Weyl spinors in physics. Denoting these

representations by their dimension, we write them as 2 and 2. The generators are

denoted by QA and QȦ, where A are the doublet indices of 2 and Ȧ are the doublet

indices of 2, which both run over the values 1 and 2. Hence, we have a total of

four supercharges in the minimal theory, which we call N = 1 supersymmetry. They

satisfy the anticommutation relations17

{QA, QȦ} = QAQȦ +QȦQA = 2σµ
AȦ
Pµ, (0.43)

{QA, QB} = {QȦ, QḂ} = 0, (0.44)

where σµ
AȦ

is an intertwiner i.e. a homomorphism between representions, from the

tensor product of our two inequivalent spinor representations of Spin(3, 1) ∼= SL(2,C)

to the vector representation of SO(3, 1). In addition, the full N = 1 super Poincaré

group has an extra internal U(1)R symmetry that only has non-trivial relations with

the supercharges. Under it, the QAs have charge 1 and the QȦs have charge -1. In gen-

eral, internal symmetries which transform the supercharges are called R-symmetries.

We then write the even part of the full N = 1 super Poincaré algebra as

SP0
N=1 = R3,1 ⋊ so(3, 1)⊕ u(1)R. (0.45)

The semi-direct product between translations and rotations re�ects the non-trivial

commutation relations between these symmetries.18 Next, written in terms of rep-

16The canonical textbook for supersymmetry is [4], though a more modern perspective can be
found in [21, 22].

17A cheap scrap of intuition is that supersymmetries are the �square root� of a translation.
18Walk forward and turn around and from the same initial position have your friend turn around
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resentations of the Lorentz subalgebra of the Poincaré algebra and R-symmetry, the

odd part is

SP1
N=1 = 21 ⊕ 2−1. (0.46)

Here, the subscript indicates the u(1)R charge.

One can further extend this algebra to include an additional set of supercharges,

which then leads to N = 2 supersymmetry.19 Introducing indices i, j = 1, 2 to

distinguish between the two sets, our non-trivial supersymmetry relation is enhanced

to

{Qi
A, Q

j

Ȧ} = 2εijσµ
AȦ
Pµ, (0.47)

where εij is the antisymmetric tensor, de�ned to have ε12 = +1. Further conventions

and notations for spinors can be found in Appendix A.2. The even part of N = 2

super Poincaré algebra is then

SP0
N=2 = R3,1 ⋊ so(3, 1)⊕ su(2)R ⊕ u(1)R, (0.48)

where we recognize a larger R-symmetry, which rotates the two sets of supercharges,

thus giving i, j the meaning of indices of the fundamental represntion of su(2). In-

cluding this representations of su(2)R, the odd part is now

SP1
N=2 = (2;2)1 ⊕ (2;2)−1. (0.49)

This story has been up to now told in Minkowski space with a metric ηµν =

diag[−1, 1, 1, 1]. We are, of course, not interested in pseudo-Riemannian manifolds,

so we must perform a Wick rotation to the desired Euclidean signature. The resulting

and walk forward. You will �nd yourself at an advantage should you be about to duel.
19The reader is directed to the excellent resource [80].
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N = 2 super Euclidean algebra then has even part

SE0
N=2 = R4 ⋊ (su(2)+ ⊕ su(2)−)⊕ su(2)R ⊕ u(1)R (0.50)

where we have exploited the Lie algebra isomorphism so(4) ∼= su+(2)⊕ su−(2). The

odd part is then

SE1
N=2 = (2,1;2)1 ⊕ (1,2;2)−1, (0.51)

where we understand the (2,1) representation of su(2)+⊕su(2)− as the Wick rotated

2 representation of so(3, 1) and likewise (1,2) as 2.

Having arrived at our �nal algebra, we now turn to one of its most important

representations.

0.2.2 Vector Multiplet

Representations of supersymmetry can be understood as a collection of bosonic and

fermionic �elds, which we call a multiplet. Since we are interested in gauge theory,

we need to understand the multiplet that contains a gauge connection A ∈ A(P )

amongst its �elds. This representation is known as the vector multiplet.

Other than the gauge connection, the �elds in the multiplet are two complex scalar

�elds ϕ and ϕ, two Weyl fermions ψ and ψ called gauginos, and, in order to keep an

equal number of bosonic and fermionic degrees of freedom, an auxiliary �eld D.20

Each of these �elds takes values in the adjoint representation of the gauge group G.

Further, the Weyl fermions are in the 2 of su(2)R while D is in the 3. Finally, each

�eld has a u(1)R charge. Collectively, this can all summarized in the table below.

20Counting, we actually �nd an extra bosonic degree of freedom which stems from the fact that
ϕ and ϕ are not complex conjugates in Euclidean space. The resolution of this issue comes down to
a choice of �complex contour,� though we do not dwell on this subject.
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Field Symbol su(2)+ ⊕ su(2)− ⊕ su(2)R u(1)R

Gauge Field A (2,2;1) 0

su(2)− Gaugino ψ (1,2;2) 1
su(2)+ Gaugino ψ (2,1;2) −1
Complex Scalar ϕ (1,1;1) 2

Complex Scalar ϕ (1,1;1) −2
Auxiliary Field D (1,1;3) 0

Table 1: Vector multiplet �elds.

We mention in passing that it is also possible to express this collection of �elds in

terms of two representations of the N = 1 algebra. Without diving into the business

of superspace, we have the �elds A and ψ contained in a N = 1 vector multiplet Wµ,

and the �elds ψ, ϕ, and ϕ contained in a so-called N = 1 chiral multiplet Φ. The

auxiliary �eld D is shared between the two multiplet, and splits into two auxiliary

su(2)R doublets. We will very rarely appeal to this language, and refer the reader to

[37, 56, 89] for a more thorough discussion of the superspace formalism.

In order to write the transformations of these �elds under supersymmetric trans-

formation, we introduce two anticommuting variational parameters ϵAi and ϵȦi. We

then de�ne the transformation of an arbitrary �eld O through

δO = (ϵAiQ
i
A + ϵȦiQ

i

Ȧ)O (0.52)

Suppressing spinor indices for the moment, we have

δϕ = −ϵiψi, (0.53)

δϕ = ϵiψi, (0.54)

δAµ = ϵiσµψi − ϵiσµψi, (0.55)

δψi = ϵiσ
µDµϕ+ ϵi[ϕ, ϕ] + ϵiσ

µνFµν − ϵjDij, (0.56)
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δψi = −ϵiσ
µDµϕ− ϵi[ϕ, ϕ] + ϵiσ̃

µνFµν + ϵjDij, (0.57)

δDij = 2ϵ(iσ
µDµψj) − 2ϵ(iσ

µDµψj) − ϵ(i[ϕ, ψj)] + ϵ(i[ϕ, ψj)]. (0.58)

Here, we write Dµ for the gauge covariant derivative DA = d+ A and σµν or σ̃µν for

the projection onto the self-dual or anti-self-dual subspaces of two forms.

With just this data, our �elds are only de�ned on R4. In order to extend their

de�nition to an arbitrary four smooth manifold X with a principal bundle P −→ X, we

must provide the additional data of a principal bundle PR −→ X for the R-symmetry

SU(2)R. With the addition of this structure, we can now consider each �eld as a

section of a particular bundle over X. Case by case, A is a G-connection for P , ϕ and

ϕ are sections of adP ⊗C, the adjoint bundle extended to the complex numbers , D

is a section of adP ⊗W , the adjoint bundle tensored with a real rank three vector

bundle associated to PR� and ψ and ψ are sections of adP ⊗ S± ⊗ SR, the adjoint

bundle tensored with spin bundles S± on X and a spin bundle SR associated to PR.

The mathematically savvy will object to the last identi�cation above, as the exis-

tence of spin bundles S± requires a spin structure. In fact, �most� four manifolds are

not spin, and in such cases any attempt to lift transition function to a spin bundle will

encounter a Z2 con�icts over intersections. The root of the issue is an obstruction

to lifting a SO(4) bundle to its double cover Spin(4), which is realized in the sec-

ond Stiefel-Whitney class w2(TX) ∈ H2(X,Z2) of the manifold. In a phrase, w2(X)

measures the obstruction to trivializing TX over oriented surfaces embedded in X.

Thankfully, there is a nifty side-step to this obstruction for the case at hand. Should

w2(TX) ̸= 0, we take PR to be a principal SO(3) bundle whose own second Stiefel-

Whitney class satis�es w2(PR) = w2(TX). Then, while on their own S± and SR do

not exist, the bundles S± ⊗ SR do exist! Since the issue in the transition functions
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hinges on a Z2, the bundles can conspire to solve each other's problem; two wrongs

do make a right in Z2. We will see how this work-around can be fully exploited when

we conduct our twist.

0.2.3 N = 2 Super Yang Mills Action

We now come to the end of our �untwisted� story with the N = 2 super Yang-

Mills action. It is de�ned as the �supersymmetric completion� of the Yang-Mills

action (0.19), that is, the minimal extension of SYM that it is invariant under the

supersymmetric transformations of (0.53)-(0.58). Explicitly, we have

S0
SYM =

1

g20

∫
X
d4x

√
gTr

[
1

4
FµνF

µν − 1

2
DijD

ij −DµϕDµϕ+ ψ
i
σµDµψi

−ψi[ϕ, ψi]− ψ
i
[ψi, ϕ]−

1

2
[ϕ, ϕ]2

]
, (0.59)

where g0 is the constant bare gauge coupling. Here the derivative Dµ is not only gauge

covariant, but is also metric covariant and therefore it contains a spin connection ω

which splits into two components ω+ = ωµ
AB and ω− = ωµ

ȦḂ, associated to its self-

dual and anti-self-dual parts.21 They can likewise be viewed as the spin connections

for S+ and S− respectively. Further, the derivative is also covariant with respect to

the R-symmetry transformations, and thus contains a connection for PR, which we

call ωR.

In addition to (0.59), it is customary to include the topological term of the in-

stanton number which we introduced in (0.18). The term is by itself invariant under

our supersymmetry transformations, and we can freely add it to our action, leading

21We are being quite coy with indices here. For those who peruse Appendix A.2, we note that
the spin connection ω has the index structure ωµ

ab, where a and b are frame indices. We then have

ω+
µ
AB = σab

ABωµ
ab and ω−

µ
ȦḂ = σ̃ab

ȦḂωµ
ab. In curved space, our σµ should be written as eµaσ

a

to make this clear.
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to

SSYM = S0
SYM +

iθ0
64π2

∫
X
d4xTr [ϵµνρσFµνFρσ] , (0.60)

where we have introduced the constant theta angle θ0. We note in passing that the

normalization here have been taken to align with [62, 71].

The theory just introduced is a specialization of the most general vector multiplet

action. Written in terms of N = 1 superspace, the general action for an abelian gauge

group takes the form

SVM =
1

4π
Im

[∫
X̂
d4x d4θ

∂F(Φ)

∂Φ
Φ +

1

2

∫
X̂
d2θ

∂2F
∂Φ2

W µWµ

]
, (0.61)

where we write X̂ for the N = 2 superspace of X which has coordinates (x, θ, θ). The

theory is entirely speci�ed by the gauge invariant holomorphic function F(Φ), which

is called the prepotential. Further, it is constrained to be homogeneous of degree two,

which means that CF (λΦ) = λ2F(Φ) for some λ ∈ R+. If we take

F(Φ) =
τ0
2
Φ2, (0.62)

where τ0 is the complex coupling constant

τ0 =
4πi

g20
+
θ0
2π
. (0.63)

Then SVM with this prepotential will be identical to SSYM with an abelian gauge

group. Since this quadratic prepotential has the minimal amount of interaction be-

tween �elds allowed by N = 2 supersymmetry, SSYM, for any gauge group, is often

called the free theory. We will also often refer to SSYM as the UV theory.

The breakthrough of Seiberg and Witten in their work [76, 77] was to provide an
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exact low energy e�ective theory for the G = SU(2) N = 2 super Yang Mills theory

SSYM. Flowing the UV theory into the low energy limit, the so-call IR theory, they

discovered that the gauge symmetry is generically broken to U(1) at every point on

the space of quantum vacua. Their solution provided a explicit computation of the

prepotential F(Φ) for a theory of the form (0.61). While we will not dive deeper into

the fascinating world of Seiberg-Witten theory here, our generalization of Donaldson-

Witten invariants will extend to the twisted IR theory, so it behooves us to be familiar

with the form of its action.

0.3 The Twist

With N = 2 supersymmetry addressed, we are now prepared to expose the �twist.�

Succinctly, twisting is the procedure of constraining a thoery to a particular gravita-

tional background whereon the correlation functions are independent of the metric,

i.e. topological. In addition, the resulting supersymmetry algebra contains a scalar

supercharge Q which satis�es Q2 = 0 on gauge invariant objects, therefore allowing

for one to speak of the cohomology of the theory. We will provide a few perspectives

on this process.

For a �rst taste, recall from our discussion of the vector multiplet that our ability to

put the N = 2 super Yang-Mills theory on an arbitrary four manifold X is predicated

by a choice of SU(2)R principal bundle PR and a choice of connection ωR. As Witten

realized, this choice can make a world of di�erence. Suppose we take PR to be

isomorphic to the SO(3) bundle P+ → X associated with self-dual forms on X, and

then further make the choice that the connections on each bundle are isomorphism,

i.e. ω+ ∼= ωR. Then, looking at SSYM, we realize all ω± and ωR dependence is
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contained in the ψ
i
σµDµψi term. Expanding the derivative, we have

Dµψ
iA = ∂µψ

iA + [Aµ, ψ
iA] +

1

2
ω+
µ
ABψiB − 1

2
ωRµ

ijψj
A, (0.64)

Exploiting the isomorphism PR ∼= P+ to its fullest extend, we have

ωRµ
ijδAj = ω+

µ
ABδiB (0.65)

where we are identifying the su(2)R and su(2)+ indices. With this identi�cation the

last two terms of (0.64) above cancel, quite remarkably eliminating all dependence on

ω± and ωR in SSYM. This isomorphism ω+ ∼= ωR should be understood as changing

the theory's coupling to gravity, since ω+ is indeed dependent on the metric on X.

For a more systematic and global perspective, consider two subgroups of the super

Euclidean group given by

G0 = (SU(2)+ × SU(2)− × SU(2)R)/Z2, and G1 = (SU(2)+ × SU(2)−)/Z2,

(0.66)

where both quotients are by the central subgroup which acts as (−1,−1,−1) and

(−1,−1) respectively. Ignoring the abelian R-symmetry, G0 is the group under which

our supercharges transform, with the spinor representation of

(2,1;2)⊕ (1,2;2). (0.67)

The subgroup G1 is the structure group of the tangent bundle TX, that is, the rotation

group, and itself dictates the behavior of the theory's gravitational coupling. We now
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introduce the injective homomorphism G1 ↪→ G0 de�ned by

[(g1, g2)] −→ [(g1, g2, g1)], (0.68)

where we are working with equivalence classes under the Z2 quotient. Now, given

a Riemannian metric, we can specialize to G0-bundles with R-symmetry and Levi-

Civita connections which pullback to G1-bundles with a single Levi-Civita connection

under the homeomorphism. This is likewise equivalent to de�ning a new SU(2)′+ as

the diagonal subgroup of SU(2)+ × SU(2)R, and then taking (SU(2)′+ × SU(2)−)/Z2

as the new structure group for TX. In mathematical parlance, we are conducting

a reductive of the structure group associated to the homomorphism (0.68). In this

approach, the rationale for identifying the su(2)R and su(2)+ indices in (0.65) is

manifest.

We can pullback our supercharges under this map to obtain a new representation

(1,1)⊕ (3,1)⊕ (2,2) (0.69)

We thus see that our original eight supercharges have been �twisted� into a scalar

superchargeQ, a vector supercharge KAȦ, and a self-dual superchargeQ
+
AB. Note that

none of these are spinor representations, and therefore the resulting theory has no need

for a spin structure and can be de�ned on any smooth four manifold X. Unfortunately,

in general, a smooth four manifold does not admit non-vanishing vectors or self-dual

forms, so KAȦ and Q+
AB will not exist. Thankfully, all smooth four manifolds allow

for a non-vanishing scalar �eld Q.

While escaping the need for extra structure on X is a great boon, we have yet to

see the real power of the twist. To do so, we turn to the twisted vector multiplet and
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its transformations under our new scalar supercharge Q.

0.3.1 Twisted Vector Multiplet

Let's take a look at the resulting twisted vector multiplet representation. In the

trenches, the twist follows a very simple program. First, utilizing the index inden-

ti�cation perspective of (0.65), every time we �nd a su(2)R, index i, j we replace it

with a new su(2)+ index A,B. Next, since the twist theory is devoid of any spinors,

we will exercise to the fullest extend our intertwiners σµ and σµν , arriving at objects

with exclusively spatial indices µ, ν, &c.

We begin by noting that any �elds that transformed trivially under the SU(2)R

symmetry, namely the scalar �elds ϕ and ϕ and the gauge connection Aµ, do not

change. Nevertheless, to align with the literature, we will write ϕ as λ.22 Meanwhile

the Weyl fermions experience radical developments. First, ψȦi now becomes ψȦB, so

we de�ne23

ψµ = σAȦµ ψAȦ. (0.70)

Turning to ψAi, we arrive at ψAB which splits into symmetric and antisymmetric parts

as

ψAB = ψ(AB) +
1

2
ψϵAB, (0.71)

where ψ(AB) is the symmetric part and ψ is the trace. We then de�ne

χµν = σABµν ψ(AB), and η =
1

2
ψ, (0.72)

22It is worth mentioning that in the physical theory, prior to the Wick rotation, the �elds ϕ and
ϕ are complex conjugates of each other. In the present theory, we do not recognize this relation and
consider ϕ and λ to be independent �elds, thus the change in notation. If we were to require them
to be complex conjugates of each other, then the �nal objects in our analysis, the Donaldson-Witten
invariants would not be real.

23We lament the notation, but the literature is rigid in its preferences. It is crucially important
not to confuse this with ψAi.



40

giving us a self-dual fermionic two form χµν and a fermionic scalar η. Finally, the

auxiliary �eld Dij originally transformed in the 3 of su(2)R, so as DAB, we can express

it as a self-dual two-form and write

Dµν = σABµν DAB. (0.73)

At times it is preferable to use an alternative auxiliary �eld de�nition of

Hµν = F+
µν −Dµν , (0.74)

which we note is still very much a self-dual �eld. The twisted vector multiplet �eld

content is summarized in the table below.

Field Symbol su(2)′+ ⊕ su(2)− Bundle u(1)R

Gauge Field Aµ (2,2) A(P ) 0
Vector Gaugino ψµ (2,2) ΠΩ1(X, adP ) 1
Scalar Field ϕ (1,1) Ω0(X, adP ) 2
Scalar Field λ (1,1) Ω0(X, adP ) −2
Scalar Gaugino η (1,1) ΠΩ0(X, adP ) −1
Self-Dual Gaugino χµν (3,1) ΠΩ2,+

g (X, adP ) −1

Self-Dual Auxiliary Field Hµν/Dµν (3,1) Ω2,+
g (X, adP ) 0

Table 2: Twisted vector multiplet.

Above, we denote the superspace of a bundle E −→ X as ΠE, which indicates that

the �bres are considered odd i.e. fermionic. We also would be remiss not to mention

that both ΠΩ2,+
g (X, adP ) and Ω2,+

g (X, adP ) depend on a choice of metric g ∈ MetX

as can be seen in the de�nition (0.10). This will be a source of momentarily turmoil

when we move to our generalization. Finally, since everything is valued in adP , we

will often omit it.

Next, turning to the twisted transformation laws, our original (0.53)-(0.58), re-
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stricted to just the scalar supercharge Q, gives us24

δ
∣∣
Qϕ = 0, (0.75)

δ
∣∣
Qλ = ϵη, (0.76)

δ
∣∣
QAµ = ϵψµ, (0.77)

δ
∣∣
Qη = ϵ[ϕ, λ], (0.78)

δ
∣∣
Qχµν = ϵF+

µν − ϵDµν or δ
∣∣
Qχµν = ϵHµν , (0.79)

δ
∣∣
Qψµ = −ϵDµϕ, (0.80)

δ
∣∣
QDµν = 2ϵ(D[µψν])

+ − ϵ[ϕ, χµν ], or δ
∣∣
QHµν = ϵ[ϕ, χµν ]. (0.81)

Reversing our de�nition for the transformation (0.52) and extracting the parameter

ϵ, we can rewrite the above as

Qϕ = 0, (0.82)

Qλ = η, (0.83)

QAµ = ψµ, (0.84)

Qη = [ϕ, λ], (0.85)

Qχµν = F+
µν −Dµν , or Qχµν = Hµν (0.86)

Qψµ = −Dµϕ, (0.87)

QDµν = 2(D[µψν])
+ − [ϕ, χµν ], or QHµν = [ϕ, χµν ]. (0.88)

24Here we are working with �elds rescaled relative to the original work of Witten. Denoting the
�elds of [85] with a superscript W , we have ψ 7→ iψW , ϕ 7→ iϕW , λ 7→ − i

4λ
W , η 7→ 1

2η, and

χµν 7→ 1
2χ

W
µν . Since the theory there is on-shell, one must also note a use of the equation of motion

Dµν = 0.
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With this approach, we see that

Q2 = δϕ, (0.89)

where δϕ is a left-action gauge transformation by ϕ. In a physical theory, we exclu-

sively work with gauge invariant objects, and therefore our scalar supercharge Q in

this context is a nilpotent di�erential. Indeed, as we will discuss in the main body of

our work, Q is the di�erential for the quotient space A/G and allows us to consider

the equivariant cohomology classes of HG(A(P )), but all in due time. At present, it's

time to twist the action.

0.3.2 Twisted Super Yang-Mills Action

Twisting the �elds of our N = 2 super Yang-Mills action (0.60), we arrive at our

twisted UV N = 2 super Yang-Mills action

SUV =
1

g20

∫
X
d4x

√
gTr

[
1

4
FµνF

µν − 1

2
DµνD

µν + 2(Dµψν)χ
µν +

1

2
χµν [ϕ, χ

µν ]

− 2ηDµψ
µ − 2λ[ψµ, ψ

µ] + 2λDµD
µϕ− 2ϕ[η, η]− 2[ϕ, λ]2

]
+

iθ0
64π2

∫
X
d4xTr [ϵµνρσFµνFρσ] . (0.90)

Here, since the action is entirely quadratic in the auxiliary �eld Dµν , its equation of

motion is simply Dµν = 0. In our conventions, that

1

4

√
gFµνF

µν =
1

2

√
gF+

µνF
µν
+ − 1

8
ϵµνρσFµνFρσ, (0.91)

so we can rewrite our action as

SUV =
1

g20

∫
X
d4x

√
gTr

[
1

2
F+
µνF

µν
+ − 1

2
DµνD

µν + 2(Dµψν)χ
µν +

1

2
χµν [ϕ, χ

µν ]
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−2ηDµψ
µ − 2λ[ψµ, ψ

µ] + 2λDµD
µϕ− 2ϕ[η, η]− 2[ϕ, λ]2

]
+

iτ0
32π

∫
X
d4xTr [ϵµνρσFµνFρσ] . (0.92)

where we recall the de�nition of our complex coupling τ0 in (0.63). Further, and quite

crucially, we can now write the entire twisted action as25

SUV = QVUV +
iτ0
8π

∫
X
TrFA ∧ FA, (0.93)

where

VUV =
1

g20

∫
X
d4x

√
gTr

[
1

2
(F+

µν +Dµν)χ
µν − 2λDµψ

µ − 2η[ϕ, λ]

]
. (0.94)

In this formulation, it is manifest that

QSUV = 0, (0.95)

since VUV is a gauge invariant object and Q2 = δϕ. The topological itself closes under

Q, since it results in a total derivative.

While the fact that our action can be written as a Q-exact part and a non-exact

topological term is remarkable on its own, the true beauty of the theory is hidden in

the metric dependence. We have already seen that our choice of isomorphism between

the principal bundles PR and P+ leads all dependence on the spin connection ω to

drop out of the action, but there is still explicit metric dependence in the action. To

see it, we take an in�nitesimal change gµν −→ gµν + δgµν and compute the energy-

25Our convetions for di�erential forms can be found in Appendix A.1.
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momentum tensor of the theory through

δgSUV =
1

2

∫
X
d4x

√
gδgµνTUV

µν . (0.96)

We then �nd

TUV
µν = Tr

[
1

2
FµρFν

ρ +
1

2
FνρFν

ρ − 1

4
gµνF

ρσFρσ

+(D[µψρ])χν
ρ + (D[νψρ])χµ

ρ − 1

2
gµν(Dρψσ)χ

ρσ

+2(Dµη)ψν + 2(Dνη)ψµ − 2gµν(Dση)ψ
σ

−2(Dµλ)(Dνϕ) + 2(Dνλ)(Dµϕ) + 2gµν(Dρλ)(D
ρϕ)

−2λ[ψµ, ψν ] + 2gµνλ[ψρ, ψ
ρ] + 2gµνϕ[η, η] + 2gµν [ϕ, λ]

2

]
. (0.97)

In this computation we have made use of the fact that X is closed, allowing us to

integrate by parts and avoid any variations of our Levi-Civita, or metric, connection.

We have also made use of the identity

δg
√
g = −1

2

√
ggµνδg

µν . (0.98)

Finally, the self-dual �elds have implicit metric dependence which must be preserved

under a change in the metric. For example, we have

δgDµν = −1

4
gρσδg

ρσDµν +
1

2

√
gϵµνρσδg

ρρ′gσσ
′
Dρ′σ′ . (0.99)

Variations of this sort will soon become commonplace and they are thoroughly ex-

plored in Appendix D along with a myriad of other useful identities. Inspecting (0.97),
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we see that it can be written

TUV
µν = QΛUV

µν , (0.100)

where

ΛUV
µν = Tr

[
1

2
Fµ

ρχνρ +
1

2
Fν

ρχµρ −
1

4
gµνF

ρσχρσ

+2(Dµλ)ψν + 2(Dνλ)ψν − 2gµν(Dσλ)ψ
σ + 2gµνη[ϕ, λ]

]
. (0.101)

In the next section we will see how the fact that the energy-momentum tensor is

Q-exact means that the theory is truly independent of the choice metric and that all

correlations of its observables are di�eomorphism invariants of X.

Before we turn to the exciting conclusion to this tale, we quickly display the

twisted IR theory. Here, we want to write the explicit twisted action (0.61) for a U(1)

vector mulitplet with an arbitrary prepotential F . With an abelian gauge group, our

transformations (0.82)-(0.88) now take the form26

QAµ = ψµ, Qψµ = −∇µa, (0.102)

Qa = 0, (0.103)

Qa = η, Qη = 0, (0.104)

Qχµν = F+
µν −Dµν , QDµν = 2(∇[µψν])

+, (0.105)

where for historic reasons we write a for ϕ and a for λ. Further, we de�ne the arbitrary

complex couplings

τ =
∂2F(a)

∂a2
, and τ =

∂2F(a)

∂a2
. (0.106)

26To obtain the transformations and action of [71] (and the more general case of [62]) exactly,

denoting the �elds therein with superscript u, there is a rescaling of a 7→ 4
√
2au, a 7→ 1

2
√
2
au,

η 7→ 2iηu and χµν 7→ −iχu
µν .
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We, again for those who read footnotes, recognize that in the Euclidean theory, twisted

or not, F and F are independent functions and need not be complex conjugates. For

this reason, we take it as a de�nition that

Im τ =
τ − τ

2i
. (0.107)

Then, our twisted IR N = 2 super Yang-Mills action is

SIR =
i

24π

∫
X
d4x

√
g

[
1

2
τF+

µνF
µν
+ − 1

2
τF−

µνF
µν
− + 4iImτ(∇σa)(∇σa) + iImτDµνD

µν

+2τψσ∇ση − 2τη∇σψ
σ − 2τψµ∇νχ

µν + 2τ(∇µψν)
+χµν

+
1

2

∂τ

∂a
η(F+

µν +Dµν)χ
µν − ∂τ

∂a
ψµψν(F

µν
− +Dµν)

+
1

12

√
g−1∂

2τ

∂a2
ϵµνρσψµψνψρψσ +Q

(
i

12

∂τ

∂a
χµ

ρχµσχρσ

) ]
.

(0.108)

Similar to the UV theory, this action splits into an Q-exact part and a non-exact

topological term. We write

SIR = Q(VIR + V IR) + CIR, (0.109)

where

VIR =
i

24π

∫
X
d4x

√
g

[
−1

2
τ(F+

µν +Dµν)χ
µν − 2τψσ∇σa+

∂τ

∂a
ψµψνχ

µν

]
, (0.110)

V IR =
i

24π

∫
X
d4x

√
g

[
1

2
τ(F+

µν +Dµν)χ
µν − 2

∂F
∂a

∇σψ
σ +

i

12

∂τ

∂a
χµ

ρχµσχρσ

]
,

(0.111)
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and

CIR =
i

24π

∫
X
d4x

[
τ

4
ϵµνρσFµνFρσ −

1

2

∂τ

∂a
ϵµνρσψµψνFρσ +

1

12

∂2τ

∂a2
ϵµνρσψµψνψρψσ

]
.

(0.112)

Here, the action is, of course, Q-closed as

QSIR = 0, (0.113)

though the closure of the topological term is a pinch more involved, as

QCIR =
i

24π

∫
X
d4x∇µ

[
τϵµνρσψνFρσ −

1

3

∂τ

∂a
ϵµνρσψνψρψσ

]
= 0, (0.114)

since X is closed.

We can also observe that when we specialize to an abelian gauge group and take

the quadratic prepotentials

F(a) =
τ0
2
a2, and F(a) =

τ 0
2
a2, (0.115)

where we do actually mean the complex conjugate of the complex coupling constant,

then the action SIR agrees with SUV.

0.3.3 Donaldson-Witten Invariants

We are now at long last ready to construct the Donaldson-Witten invariants. To

start, we will investigate the properties of the simplest of the invariants, the so-called

partition function. It is de�ned as

ZW[g] =

∫
[dVM]e−SUV , (0.116)
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where we have introduced the vector mutliplet path integral measure27

[dVM] = [dAdϕ dλ dD dψ dη dχ]. (0.117)

In the most important computation of the twisted theory, under a change in the

metric, we �nd

δgZW[g] = δg

[∫
[dVM]e−SUV

]
(0.118)

=

∫
[dVM]δg

(
e−SUV

)
(0.119)

=

∫
[dVM]

(
1

2

∫
X
d4x

√
g(x)δgµν(x)TUV

µν (x)

)
e−SUV (0.120)

=

∫
[dVM]Q

[
1

2

∫
X
d4x

√
g(x)δgµν(x)ΛUV

µν (x)

]
e−SUV (0.121)

=

∫
[dVM]Q

[
1

2

∫
X
d4x

√
g(x)δgµν(x)ΛUV

µν (x)e
−SUV

]
(0.122)

= 0. (0.123)

We have been rather pendantic as nearly every lines holds an important lesson. In

the �rst line, we rely on the fact that there are no di�eomorphism anamolies in

four dimensions [1]. If there were, we would have not been able to move our metric

variation through the vector multiplet measure. The next line is de�nitional, but

allows us to exploit the hallmark relation of (0.100) in moving from (0.120) to (0.121).

As mentioned prior, the exactness of the energy-momentum tensor is the crux of the

twist. Next, since QSUV = 0 on account of the residual supersymmetry, we have

the next line from (0.121) to (0.122). Finally, the �nal line is a lie, that is to say

27We will not concern ourselves here with the �mythic� properties of this measure. Su�ce to say
that a rigorous de�nition of the path integral has long eluded mathematicians. It is the author's
perspective that any physical mathematician that accepts the path integral into their hearts will be
met with a fount of results. As is often said, �Too much rigor leads to rigor mortis.�
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it is only formally true. It requires an integration by parts over the entirety of the

vector multiplet �eld space, which is known to fail for X with b+2 = 1, where there are

contributions from boundary terms. In this case, ZDW[g] is only piece-wise constant

on Met(X). Though, at present unknown, there is also an expectation of continuous

metric dependence for b+2 = 0 [75] . Still, for b+2 > 1, the �nal identity holds and the

partition function is entirely independent of the choice of metric!

We can also consider correlation functions of gauge invariant observables of our

theory. For such an object O, we de�ne its expectation value

⟨O⟩UV =

∫
[dVM]O e−SUV . (0.124)

Note that, expect in cases where the �eld space integration by parts fails, if O is

Q-exact, say O = QV , we have

⟨O⟩UV = ⟨QV⟩UV = 0. (0.125)

That is, Q-exact operators decouple from the theory and we can form equivalence

classes under which two observables are equal if they only di�er by the addition of a

Q-exact term. In addition, if an observable has no metric dependence and is Q-closed,

we have

δg⟨O⟩UV =
1

2

∫
X
d4x

√
g(x)⟨Q

(
OΛUV

µν (x)
)
⟩UVδgµν(x) = 0. (0.126)

Therefore, the expectation value of any Q-closed, gauge invariant observable will be

formally independent of the metric. The interesting, i.e. topological, observables

of the theory are those that live in the cohomology associated to the di�erential

Q. Since Q squares to a gauge transformation as Q2 = δϕ, we must restrict to
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gauge invariant observables. Indeed, what we are really doing is working in the

equivariant cohomology of the space of gauge connections A(P ) with respect to gauge

transformations G, denoted HG(A(P )). In the next section we will fully explore this

perspective.

At present, we will simply exhibit elements of HG(A(P )). Consider the tower of

densities

O(0) =
1

2
Tr[ϕ2], (0.127)

O(1) = −Tr[ϕψµ]dxµ, (0.128)

O(2) =
1

2
Tr[ϕFµν + ψµψν ]dx

µ ∧ dxν , (0.129)

O(3) = −1

2
Tr[ψµFνρ]dx

µ ∧ dxν ∧ dxρ, (0.130)

O(4) =
1

4
Tr[FµνFρσ]dx

µ ∧ dxν ∧ dxρ ∧ dxσ. (0.131)

Under the action of the scalar Q, they satisfy the descent equation

QO(n) = dQ(n−1), (0.132)

with d the exterior derivative of X. Integrating these observable densities over appro-

priate cycles, we de�ne the n-observables O(Σn) associated to the n-cycles Σ as

O(n)(Σn) =

∫
Σn

O(n). (0.133)

These classes only depend on the homology classes of Σn in cohomology, as if ∂Σn = 0,

then

QO(n)(Σn) =

∫
Σn

dO(n−1) =

∫
∂Σn

O(n−1) = 0, (0.134)
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via the descent equation. Likewise, if Σn = ∂Σn+1, then

O(n)(Σn) =

∫
Σn+1

dO(n) =

∫
Σn+1

QO(n+1) = QO(n+1)(Σn+1). (0.135)

This is reminiscent of the Donaldson map µD in (0.40), where each Σn ∈ Hn(X) is

mapped to a cohomology class H4−n(Mk,g), where we recall thatMk,g is the subspace

of A/G where F+
A = 0. The correspondence is even more robust when we identify

the u(1)R charge of our twisted vector multiplet �elds as the cohomological degree of

HG(A), so that our n-observables has degree 4− n.

The observation above this suggests that we should integrate our n-observables

over Mk,g as we did for the Donaldson polynomial invariants. As it turns out, this is

precisely what is down by the path integral in our twisted theory! To fully understand

this, we turn to the Mathai-Quillen formalism, though we will work in a direction

reverse to the standard approach. For those interested in pedagogy, we direct the

reader to the wonderful references [3, 10].

Suppose we have a Q-closed, gauge invariant observable O. We then suggestively

write its expectation value as

⟨O⟩UV =

∫
[dVM]Oe−SUV

=

∫
Â
[dAdψ]

∫
̂

Ω2,+
g (X)

[dHdχ]

∫
LieG

[dϕ]

∫
L̂ieG

[dλdη]Oe−Q(V Loc

VU
+V Pro

UV
+V Pot

UV
)−2πiτ0k

(0.136)

where we have introduced a myriad of new de�nitions. Here, for reasons that will

soon become clear, we have split VUV into

V Loc
UV =

1

g20

∫
X
d4x

√
gTr

[(
Fµν −

1

2
Hµν

)
χµν

]
, (0.137)
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V Pro
UV = − 1

g20

∫
X
d4x

√
gTr [2λDµψ

µ] , (0.138)

V Pot
UV = − 1

g20

∫
X
d4x

√
gTr [2η[ϕ, λ]] (0.139)

Next, turning to the integration, we de�ne M̂ of a manifold as the superspace of the

tangent bundle, so that M̂ = ΠTM . With this in mind, we see that λ and η are

the coordinates of L̂ieG, Aµ and ψµ of Â(P ), and Hµν and χµν of Ω̂2,+
g (X). Working

generally, suppose that the even coordinates of M̂ are given by x and the odd by ψ.

Integration over both x and ψ is isomorphic to integration over M with di�erential

forms. Under this isomorphism, we map each odd ψ coordinate to a generator dx of

T ∗M . Thus, writing ωO ∈ Ω∗(M) for the image of O ∈ C∞(M̂), we have

∫
M̂

[dxdψ]O =

∫
M

ωO. (0.140)

Returning to ⟨O⟩UV, our goal is to realize that the right hand side of (0.136)

is conducting an integration of ωO over Mk,g. To begin, let us �rst deal with the

quotient by gauge transformations, or, as we will refer to it, projection. Putting aside

the issue of reducible connections for a moment, consider the principal G bundle

π : A −→ A/G. We would like to write integrals over the base of this bundle as

integrals on the total space. That is, for an element ω ∈ H∗
G(A), we want

∫
A/G

ω =

∫
A
π∗(ω)P (A → A/G), (0.141)

where P (A → A/G) is the projection form. As we will see later, the equivariant

cohomology of ω ∈ H∗
G(A) is actually generated by the �elds A, ψ, and ϕ, so the
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correct statement is technically given by

∫
A/G

ω =

∫
LieG

[dϕ]

∫
A
π∗(ω)P (A → A/G), (0.142)

This is known as the integration of equivariant forms and was introduced in [86].

Further, a representative projection form is given exactly by the integral28

P (A → A/G) =
∫
L̂ieG

[dλdη]e−QV Pro

UV . (0.143)

which is identical to a term in ⟨O⟩UV.

Next, we turn to the localization to solutions of s(A) = F+
A = 0. In general, given

a vector bundle π : E −→ M , where the rank of E is m, there is an isomorphism

between the cohomology of M and the cohomology of E with compact vertical sup-

port, that is Hn(M) ∼= Hn+m
CVS (E) via ω 7→ π∗(ω)∧Φ(E) . This isomorphism is known

as the Thom isomorphism and Φ(E) as the Thom form [7]. In physics, we prefer

Gaussian decay, or rapid descent, as opposed to compact vertical support, which is

easily implemented after adding the structure of a Riemannian metric on the �bres of

E. Given a generic section s of E, if M is compact, the pullback of Φ(E) is Poncaré

dual to the zero locus of s, denoted Z(s), so we have

∫
M

ω ∧ s∗(Φ(E)) =
∫
Z(s)

ι∗(ω), (0.144)

where ι : Z(s) ↪→ M is the inclusion map. From this, we see that s∗(Φ(E)) is a

representative of the Euler class of E, denoted Eul(E) or Euls(E,∇) when a section

s or connection ∇ is speci�ed. The Euler class measures the �twistedness� of a bundle

and measures (with sign) the number of intersections of a generic section with the

28Consult Section 14.3.3 of [10] for a concise proof.
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zero section. Further, if one speci�es a connection ∇ on E and s is not generic, the

above relation is changed. In such cases Coker∇s ̸= 0, and we will have

∫
M

ω ∧ s∗(Φ(E)) =
∫
Z(s)

ι∗(ω) ∧ Eul(Coker∇s→ Z(s)), (0.145)

where the second form on the right hand side is the Euler class of the bundle

Coker∇s→ Z(s). We will return to this caveat shortly when we reconsider reducible

connections.

The Mathai-Quillen formalism gives an explicit construction of the Thom form

as an element of equvariant cohomology that is normalized to one [65]. Taking the

pullback of this universal Thom form through the desired section, one arrives at

an integral representation of the Euler class Euls(E,∇). Without ri�ing through

the details,29 this story can be formally extended to the in�nite case when the zero

locus s−1(0) is �nite dimensional. Thus, we can consider it for our particular case of

E = A×Ω2,+
g (X) −→ A with section s(A) = F+

A . Written in superspace, it takes the

form

Êuls(E ,∇) =

∫
̂

Ω2,+
g (X)

[dHdχ]e−QV Loc

UV , (0.146)

and formally satis�es

∫
Â

[dAdψ]OÊuls(E ,∇) =

∫
Z(s)

ι∗(ωO). (0.147)

Note that since E is a trivial bundle, Coker∇s = 0. This expression will soon be

modi�ed when we include projection.

29Physical mathematicians of the world unite, we have nothing to lose but extraneous details
(though we know of them and realize their importance.)



55

And indeed, putting everything together, we have the grand result that

∫
Ê
[dAdψdHdχ]

∫
LieG

[dϕ]

∫
L̂ieG

[dλdη]Oe−Q(V Loc

VU
+V Pro

UV
) =

∫
Mg,k

ωO ∧ Eul(CokerF),

(0.148)

where we recall F as the map ∇ ⊕ D†
A from (0.34). Of course, generically away

from reducible connections, the right hand side here reduces to a simple
∫
Mg,k

ωO,

just as desired. In any case, it is clear that the integral is only non-vanishing when

degωO = IndexF.

Before moving on, let us note the two di�erences between ⟨O⟩UV in (0.136) and

(0.148) above. The �rst is the exp[−QV Pot
UV ] which is clearly Q-exact and should not

ru�e our feathers given our earlier discussion. Further, it contains a scale potential

V = 1
2
[ϕ, λ]2 whose solutions parameterize the classical vacua of the theory. The

second term is exp[−2πiτ0k] which is both Q-closed and a topological invariant in its

own right, so can happily come along for the ride.

Coming to the conclusion of this chapter of the story, let us return to the corre-

lation functions of our n-observables. We de�ne

Pℓ,r
W (p,Σ) = ⟨

(
O(0)(p)

)ℓ (O(2)(Σ)
)r⟩UV. (0.149)

Recalling that the degree of an n-observables in HG(A) is 4 − n, we see that Pℓ,r
W

vanishes unless 4ℓ + 2r = IndexF “ = ” dimMg,k. In addition, as the correlation

functions of Q-closed, gauge invariant objects, they will be formally independent of

the metric. Having run the gauntlet through the Mathai-Quillen construction, it
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should now come as no surprise that, up to a constant prefactor, we have

Pℓ,r
W (p,Σ) = Pℓ,r

D (p,Σ) (0.150)

as well as

ZW[g, p0,Σ] = ⟨eO(0)(p0)+O(2)(Σ)⟩UV = ZD[g, p0,Σ] (0.151)

Having uni�ed the perspectives, we thus re�ne our notation refer to both sides above

as the Donaldson-Witten partition function ZDW.

While outside the purview of this work, in order to compute ZDW one can �ow

into the low energy regime and turn the crank of Seiberg-Witten theory. This �ow

is conducted by taking the length scales to in�nity, which is the same as changing

the metric. Since the twisted theory is topological, the �ow is exact, that is, the UV

invariants are exactly equal to the IR invariants. We can therefore write

ZDW[g, p,Σ] = ⟨eO(0)(p)+O(2)(Σ)⟩UV = ⟨eO
(0)
IR

(p)+O(2)
IR

(Σ)+Σ2T (u)⟩IR, (0.152)

where the correlation function on the right hand side is the path integral weighted by

the IR action SIR. The term T (u) is the so-called contact term which result from the

surface Σ having self-intersection. The bene�t of the IR theory is that it is abelian,

which greatly simpli�es the integral. Here, we have certainly been glib and glossed

over a sea of complexities, so we refer the curious reader to [71, 87, 88].

But enough of the past and onto the future!
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1 The Algebra

1.1 Overview

Having settled the features of the original Donaldson-Witten invariants, we now shift

to our construction of the family invariants. An early idea from Donaldson [24]

and later re�ned by Moore and Witten [71] was to consider ZDW as a degree zero

element of the equivariant cohomology of the space of metrics Met(X) with respect

to orientation preserving di�eomorphisms Diff+(X). This immediately implies the

possibility of higher degree elements, which could be understood as di�eomorphism

invariant di�erential forms on Met(X). Such forms could then be integrated over

appropriate families of metrics to construct new smooth invariants of X. These are

the family invariants.

Recall that ZDW was constructed by integrating elements of HG(A(P )) over all

twisted multiplet �elds, which we should now view as a projection from a total space

down to the base space of HDiff+(X)(Met(X)). Therefore, extending to higher degrees

in the base requires a similar extension in the total space. Prior to specialization

to cohomology, this total space needs to include M = Met(X) × A and, to work

equivariantly, we need to take the quotient by G = G⋊Diff+(X). Therefore, our goal

will be to understand the cohomology of �M/G.� Since there are �xed points of M

under G, such as isometries of X and reducible connections of A, this space is not a

manifold, and it is di�cult to speak of its cohomology in a smooth way. Therefore,

one introduces the space

EG×G M = (EG×M)/G, (1.1)

where EG is the total space of the universal G-bundle, de�ned to be a contractible
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space equipped with a free action of G. Here, the quotiented G-action acts as g ·

(h, x) = (hg−1, gx) for g ∈ G, h ∈ EG, and x ∈ M. Since EG is contractible, it adds

no new homotopy classes to EG×M, and, since it has a free action, the quotient by G

produces a well-de�ned manifold. This leads us to de�ne the equivariant cohomology

of M with respect to G as

HG(M) = H(EG×G M). (1.2)

This construction can likewise be done arrive at the equivariant cohomologies of

HG(A(P )) and HDiff+(X)(Met(X)). The maneuver around the singularities of �M/G�

is known as the Borel construction and is, in general, not immediately tractable.

What we desire is an algebraic construction, which will lead us to the Cartan model.

Before turning to our explicit construction of the Cartan model of HG(M), we

brie�y recall the well known structure of HG(A(P )) and HDiff+(X)(Met(X)).

1.2 HG(A(P ))

Recall the transformation laws of the N = 2 twisted vector multiplet from (0.82)-

(0.88). As we have previous alluded, the transformations of (A,ψ, ϕ) are a presenta-

tion of the base of the Cartan model of equivariant cohomology of A(P ) with respect

to G where the scalar supercharge Q plays the role of the di�erential. In addition,

(λ, η) and (χ,D/H) form modules for HG(A(P )) often called anti-ghost multiplets.

The total complex for this model is given by

(Ω∗(A(P ))⊗S∗(LieG)⊗Ω2,+
g (X, adP )⊗ΠΩ2,+

g (X, adP )⊗Ω0(X, adP )⊗ΠΩ0(X, adP ))G,

(1.3)
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The superscript G denotes the fact that we are restricting to the G-invariant subcom-

plex and S∗(LieG) is the symmetric algebra of LieG. This complex is only slightly

altered from the presentation of Table 2, with the one di�erence that we now write

S∗(LieG) for the home of the scalar ϕ. We also now refer to the u(1) charge as the

gauge degree, as summarized in the table below.

Field Gauge Degree
Aµ 0
ψµ 1
ϕ 2
λ −2
η −1
Hµν 0
χµν −1

Table 3: The gauge degree of the �elds of HG(A(P )) and its modules.

For convenience, we repeat the transformation laws here, collected as

QAµ = ψµ, Qψµ = −Dµϕ, (1.4)

Qϕ = 0, (1.5)

Qλ = η, Qη = [ϕ, λ], (1.6)

Qχµν = Hµν , QHµν = [ϕ, χµν ]. (1.7)

Note that we have specialized to H over D, primarily due to the simplicity of its

transformation law. We also recall that

Q2 = δϕ, (1.8)

where δϕ is a left-action gauge transformation by ϕ. Since, our complex (1.3) is

invariant under such gauge transformations, the di�erential closes as desired.
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1.3 HDiff+(X)(Met(X))

The other well known Cartan model of relevance is the equivariant cohomology of

Met(X) with respect to Diff+(X). Its complex is given by

(Ω∗(Met(X))⊗ S∗(diff(X)))Diff+(X) . (1.9)

Again, the superscript of Diff+(X) denotes the projection to the di�eomorphism in-

variant subcomplex. The �rst term is generated by the Riemannian metric g and the

symmetric gravitinos Ψ. The second term in our complex is generated by the vector

�eld Φ, which can be considered as a local di�eomorphism. In addition, each of these

�elds is equipped with a gravity degree as shown in the table below.

Field Gravity Degree
gµν 0
Ψµν 1
Φµ 2

Table 4: The gravity degree of the �elds of HDiff+(X)(Met(X)).

To avoid con�ating the di�erential of this model with any others,30 we elect to

denote it by d. We have

dgµν = Ψµν , dΨµν = ∇µΦν +∇νΦµ, (1.10)

dΦµ = 0. (1.11)

Note that

d2 = LΦ, (1.12)

30Letting typeface guide, each di�erential has been chosen to match the style of the associated Lie
group and manifold. Thus we have mathcal for HG(A), mathsf for HDiff+(X)(Met(X)), and mathbb

for HG(M).
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where LΦ is a Lie derivative of X along Φ. Hence, d2 = 0 on our invariant subcomplex.

Further, as we will be working frequently with this di�erential and those like it,

we note that it is not blind to the raising and lower of spatial indices and obeys

dgµν = −Ψµν . (1.13)

1.4 HG(M)

We will now construct the Cartan model of equivariant cohomology of M with respect

to G, thus providing a realization of HG(M).31 We shall do so in three steps, �rst

constructing the Weil model, making a suitable choice of horizontal generator, and

then conducting the Mathai-Quillen isomorphism to the Cartan model. Though our

work will be entirely self-contained, we point the interested reader to the two texts

[40] and [82] for more details.

The resulting algebra takes the form

Qgµν = Ψµν , QAµ = ψµ, (1.14)

QΨµν = ∇µΦν +∇νΦµ, Qψµ = −Dµϕ+ ΦσFσµ, (1.15)

QΦσ = 0, Qϕ = −Φσψσ. (1.16)

where g ∈ Met(X) is the metric, Ψ ∈ Ω1(Met(X)) is the symmetric gravitino, and

Φ ∈ Vect(X) is a vector �eld whose role and physical origin will be revealed in due

time. All other �elds are precisely as they were in the twisted vector multiplet.

Further, in order to fully generalize twist supersymmetry, we will also need to pro-

vide transformation laws of (χ,H, λ, η) under Q. We will understand these inclusions

as adding anti-ghost multiplets to the algebra, or precisely, modules for HG(M).

31Sticklers will worry about the non-compactness of both our groups, so we point them to [38].
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One of the most important subtleties in this story is the fact that our group G

is a semi-direct product, not a direct product. This follows from the fact that local

di�eomorphisms and gauge transformations do not commute when acting on the

space of adjoint valued di�erential forms. To see this, consider the group Diff(adP )

of di�eomorphisms of the adjoint bundle. We have Diff+(X) as the subgroup of

di�eomorphisms of the form

φf : (x, y) −→ (f(x), y), (1.17)

where f is an orientation preserving di�eomorphism f ∈ Diff+(X) and (x, y) is a local

coordinate with x ∈ X and y is an element of the adjoint representation of G. For

the trivial P bundle, we can understand G as Map(X, G), so that an element g ∈ G

is a family of di�eomorphisms parametrized by X. Thus, for each x ∈ X, we have

a di�eomorphism of the �bre of adP , gx : y → g(y;x). Thus, we have G as the

subgroup of Diff(adP ) of elements of the form

φg : (x, y) −→ (x, g(y;x)). (1.18)

We then take G to be the subgroup of elements in both subgroups G and Diff+(X).

Here, Diff+(X) acts as a group of automorphisms of G via

(φfφgφ
−1
f )(x, y) = (φfφg)(f

−1(x), y)

= φf (f
−1(x), g(y; f−1(x))))

= (x, g(y; f−1(x))).

(1.19)

Therefore, for any g ∈ G and f ∈ Diff+(X), we have φfφgφ−1
f = φg′ , with g

′ = f ∗(g) ∈

G. Hence, we realize G as a semi-direct product. We will see the repercussions of this
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shortly.

1.4.1 Weil Model

To begin, let us introduce the Weil algebra, which models EG. Its complex is given

by32

W(LieG) = S∗(LieG)⊗ Λ∗(LieG). (1.20)

We take a basis of generators {φA} for the symmetric algebra S∗(LieG) and generators

{θA} for the exterior algebra Λ∗(LieG). In addition, we assign φA degree two and θA

degree one. Here, the index A is a 2-tuple of multi-indices for both the algebra of local

gauge transformations and the algebra of local di�eomorphisms. Explicitly, one may

write A = ((n⃗, a), (n⃗′, µ)), where n⃗ and n⃗′ are indices for a basis of square-integrable

functions on X, a run over a basis of the Lie algebra g, and µ run over spatial indices

i.e., µ = 1, 2, 3, 4. We will typically ignore the square integrable functions basis, and

thus write A = (a, µ), where there is an implicit spatial coordinate dependence on

any �eld carrying an A index.

The generators {φA} and {θA}model the curvature and connection of the universal

bundle EG −→ BG, where BG = EG/G is the classifying space of G. Even though

EG is topologically trivial, it is not a trivial bundle over BG. Indeed, every G bundle,

say P →M , is a pullback of a classifying map f :M −→ BG.

In this basis, we can realize the degree one Weil di�erential dW as

dWθ
A = φA − 1

2
[[θ, θ]]A, dWφ

A = −[[θ, φ]]A, (1.21)

32The Weil algebra presented here ignores the fact that it is the Koszul algebra of the dual of
LieG. In the speci�c case under discussion, we are free to make such a gloss as we have a Killing
form on g, a metric on tangent vectors, and an integration over X with volume form

√
gd4x for

L2(X).
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where the double brackets indicate the Lie bracket of LieG. Alternatively, we can

appeal to the structure constants of G and write

dWθ
A = φA − 1

2
fBC

AθBθC, dWφ
A = −fBCAθBφC, (1.22)

where contracted indices are summed over. The �rst of these equations is Cartan's

structure equation for EG, as should be expected for a curvature and connection.

Note that d2W = 0, so we can consider the cohomology H∗(W(LieG)). It is of course

trivial, which is unsurprising since it was constructed to model EG, a contractible

space.

Additionally, the Weil algebra is equipped with degree -1 di�erential operators IA

and degree zero operators LA. They act as

IAθ
B = δBA, IAφ

B = 0, (1.23)

and

LAθ
B = −fACBθC, LAφ

B= −fACBφC. (1.24)

While unimportant for our construction, dW , IA and LA form a Lie superalgebra.

One relation of this Lie superalgebra is

LA = IAdW + dWIA, (1.25)

which may also be taken as a de�nition of LA. Indeed, we call IA the interior derivative

of the Weil algebra, and LA the Lie derivative of the Weil algebra. Note that LA gives
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the (co)-adjoint action of LieG on itself, and therefore the Lie superalgebra relation

dWLA − LAdW = 0, (1.26)

is equivalent to the statement that dW is G-equivariant.

In our construction, it is illuminating to split our basis according to the semi-

direct product of G = G ⋊ Diff+(X) (for the general case of the semi-direct product

of two �nite dimensional Lie groups we refer the reader to Appendix B). The Weil

algebra's complex then splits as

W(LieG) = S∗(LieG ⊕ diff(X))⊗ Λ∗(LieG ⊕ diff(X))

= S∗(LieG)⊗ Λ∗(LieG)⊗ S∗(diff(X))⊗ Λ∗(diff(X))

= W(LieG)⊗W(diff(X)).

(1.27)

With this splitting, we make de�nitions for the generators of each of the tensorands

above, writing

θ(a,0) = c̃a ⊗ 1, φ(a,0) = ϕ̃a ⊗ 1, (1.28)

θ(0,µ) = 1⊗ ξµ, φ(0,µ)= 1⊗ Φµ. (1.29)

We will often write these �elds without the tensored identity in what follows.

As explained above, G is a semi-direct product. On account of this, while the

complex W(LieG) splits into a tensor product of the Weil complexes of the factors of

G, the actual algebra does not. This follows from the de�nition of the Lie bracket of

LieG in (1.21) or, alternatively, from the form of the structure constants in (1.22).33

33For the correct treatment with the structure constants, we point to Appendix C, where the
simple example of X as a four torus and G = SU(2) is considered. The crux of the issue is that
the semi-direct product requires the structure constants to have dependence on the derivative of
elements of LieG, seemingly leading to structure functions. We see this in the second and third term
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For ϵ1, ϵ2 ∈ LieG and η1, η2 ∈ diff(X), we have

[[(ϵ1, η1), (ϵ2, η2)]]
(a,µ) = ([ϵ1, ϵ2]

a + ρη1(ϵ2)
a − ρη2(ϵ1)

a, [η1, η2]
µ)

= ([ϵ1, ϵ2]
a + ησ1∂σϵ

a
2 − ησ2∂σϵ

a
1, η

σ
1∂ση

µ
2 − ησ2∂ση

µ
1 ) ,

(1.30)

where ρη ∈ Aut(LieG), [·, ·]a is the Lie bracket of LieG, and [·, ·]µ is the Lie bracket of

diff(X). Thus we may write the action of dW in our split basis as

dW c̃
a = ϕ̃a − 1

2
[c̃, c̃]a − ξσ∂σ c̃

a, dW ϕ̃
a = −[c̃, ϕ̃]a − ξσ∂σϕ̃

a + Φσ∂σ c̃
a, (1.31)

dWξ
µ = Φµ − ξσ∂σξ

µ, dWΦµ = −ξσ∂σΦµ + Φσ∂σξ
µ. (1.32)

The derivative terms in both equations of (1.31) would not have been present were

G simply a direct product will play an important role in what follows.

We can also express the di�erential operators IA and LA in this split basis. De�ne

Iϵ = ϵaI(a,0), Lϵ = ϵaL(a,0), (1.33)

Iη = ηµI(0,µ), Lη = ηµL(0,µ). (1.34)

The interior derivative then acts on the generators as

Iϵc̃
a = ϵa, Iϵϕ̃

a = 0, (1.35)

Iϵξ
µ = 0, IϵΦ

µ = 0, (1.36)

and

Iη c̃
a = 0, Iηϕ̃

a = 0, (1.37)

of the �rst entry on the right hand side of (1.30). This is clear when one has a basis of Fourier
modes, where the structure constants can be made explicit, as in section Appendix C.3.
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Iηξ
µ = ηµ, IηΦ

µ = 0, (1.38)

and the Lie derivative as

Lϵc̃
a = −[ϵ, c̃]a + (−1)deg(ϵ)ξσ∂σϵ

a, Lϵϕ̃
a = −[ϵ, ϕ̃]a + Φσ∂σϵ

a, (1.39)

Lϵξ
ν = 0 , LϵΦ

ν = 0, (1.40)

and

Lη c̃
a = −ησ∂σ c̃a, Lηϕ̃

a = −ησ∂σϕ̃a, (1.41)

Lηξ
ν = −ησ∂σξν + (−1)deg(η)ξσ∂ση

ν , LηΦ
ν = −ησ∂σΦν + Φµ∂µη

ν . (1.42)

Of particular note is the inhomogenous (co)-adjoint action of gauge transformations

on the generators c̃ and ϕ̃ in (1.39).

The full complex for the Weil model is built from the tensor product of the Weil

algebra and the de Rham complex of the manifold over which we are building our

equivariant cohomology. In our case, that means we want to understand the space

Ω∗(M) = Ω∗(A)⊗ Ω∗(Met(X)). (1.43)

The �rst factor is generated by gauge connections A and dAA = ψ and the second

by metrics g and dMetg = Ψ, where dA and dMet are the usual exterior di�erentials on

the respective spaces. We introduce a single di�erential operator for this complex as

dM = dA ⊗ 1 + 1⊗ dMet, (1.44)
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so that we may summarize the algebra as

dMAµ = ψµ, dMψµ = 0, (1.45)

dMgµν = Ψµν , dMΨµν = 0. (1.46)

This complex is also equipped with interior derivatives and Lie derivatives associated

to the (co)-adjoint action of gauge transformations and di�eomorphisms on M. Using

the same notation as the previous section, let us de�ne

Iϵ = ϵaIXa , Lϵ = ϵaLXa , (1.47)

Iη = ηµIXµ , Lη = ηµLXµ , (1.48)

where Xa and Xµ are vector �elds on M generating the gauge transformations or

di�eomorphisms associated to their respective indices. We then have the interior

derivatives on M as

IϵAµ = 0, Iϵψµ = Dµϵ, (1.49)

Iϵgµν = 0, IϵΨµν = 0, (1.50)

and

IηAµ = 0, Iηψµ = −ησ(∇σAµ)− (∇µη
σ)Aσ, (1.51)

Iηgµν = 0, IηΨµν = −∇µην −∇νηµ. (1.52)

The Lie derivatives on M are given by

LϵAµ = Dµϵ, Lϵψµ = −[ϵ, ψµ], (1.53)
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Lϵgµν = 0, LϵΨµν = 0, (1.54)

and

LηAµ = −(ησ∇σ)Aµ − (∇µη
σ)Aσ, (1.55)

Lηψµ = −(ησ∇σ)ψµ − (∇µη
σ)ψσ, (1.56)

Lηgµν = −∇µην −∇νηµ, (1.57)

LηΨµν = −ησ(∇σΨµν)− (∇µη
σ)Ψσν − (∇νη

σ)Ψµσ. (1.58)

We pause here to reivew our notation. We use ∇ to denote a metric covariant

derivative which is metric compatible, that is, it satis�es ∇g = 0. The derivative

D (or DA when we speak with form language) will be used to denote a gauge and

metric compatible derivative, such that its action on any adjoint valued �eld ω can

be expressed as DAω = ∇ω + [A, ω].

As in the case of the Weil algebra, the Lie derivatives on M produce the co-adjoint

action of G. We can express this as

Lϵ = −δϵ and Lη = −Lη. (1.59)

In order to keep our di�erential operators straight, we adhere to the rule the the

calligraphic L will always refer to Lie derivatives along vectors �elds on X.

With the subcomplexes and the di�erential operators understood, we are ready

to construct the Weil model of G-equivariant cohomology of M. We begin with the

total Weil complex as

Ω(M)⊗W(LieG), (1.60)
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which models EG×M. Our total di�erential is the sum of each of the factors of the

total complex, which we write as

dT = 1⊗ dW + dM ⊗ 1. (1.61)

On its own, H(Ω(M) ⊗ W(LieG), dT) is not the cohomology we are after, since we

have not introduced an algebraic analogue to the quotient by G. To do so, we need

to restrict to the so called basic classes.

A basic class is an element ω ∈ Ω(M) ⊗ W(LieG) that is both horizontal and

invariant. Horizontal means that

(1⊗ IA + IXA⊗1)ω = 0, (1.62)

for all indices A, and invariant means that

(1⊗ LA + LXA⊗1)ω = 0, (1.63)

for all A. We can understand basic classes as those that have no vertical components

(horizontal) and no vertical variation (invariant), where vertical is understood to be

the various directions of the group action of G.

With our full complex and di�erential in hand, we have the equivariant de Rham

theorem giving us the marvelous isomorphism

HG(M) ∼= H((Ω(M)⊗W(LieG))basic, dT), (1.64)

where we have restricted to the basic classes of our total Weil complex.

Before we present the action of the Weil di�erential, we must address an issue
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with our �elds. Typically, in equivariant cohomology, we take φ to be the horizontal

generator of the Weil algebra. In our case, φ splits into Φ and ϕ̃, which are both

horizontal generators, but, as indicated in (1.39), ϕ̃ does not transform homogenously

under gauge transformations. When we identify our model of equivariant cohomology

as a background of twisted supergravity, we will want the bottom component of the

vector multiplet to transform as a healthy adjoint valued scalar �eld. This is the

�eld we wish to identify with ϕ̃. Thus we have to ask, how can we cure ϕ̃ of its

inhomogeneity?

We answer the question by considering a shift of

ϕ̃ −→ ϕ = ϕ̃− ΦσAσ. (1.65)

Since ϕ̃,Φ, and A are all horizontal, so is ϕ, which will assist us shortly in our move

into the Cartan model. Further, we have

(Lϵ ⊗ 1 + 1⊗ Lϵ)ϕ
a = −[ϵ, ϕ̃a] + Φσ∂σϵ

a − Φσ(∂σϵ
a + [Aσ, ϵ]

a)

= −[ϵ, ϕ̃− ΦσAσ] = −[ϵ, ϕ].

(1.66)

Thus we see that ϕ transforms homogenously under the co-adjoint action of gauge

transformations! As one may investigate in Appendix B, equivariant cohomology

with a semi-direct product group always leads to an inhomogenous action on the

horizontal generator of the normal subgroup half of the Weil algebra. It is not at all

typical that we can conduct a curing shift. The case at hand is special, since A is

an a�ne space and the gauge connection A transforms in precisely the correct way

to compensate for the mixed transformation of ϕ̃. This is a feature of equivariant

cohomology on the space of connections of any principal bundles with respect to the

semi-direct product of the group of di�eomorphisms of the base with the group of
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�bre preserving automorphisms.

We can also shift c̃ to transform homogeneous, and do so by taking

c̃ −→ c = c̃− ξσAσ. (1.67)

Hence, we have the full algebra of the (shifted) Weil model as

dTgµν = Ψµν , (1.68)

dTAµ = ψµ, (1.69)

dTΨµν = 0, (1.70)

dTψµ = 0, (1.71)

dTΦ
µ = −ξσ∇σΦ

µ + Φσ∇σξ
µ, (1.72)

dTϕ = −[c, ϕ]− ξσDσϕ+ ΦσDσc− ξσΦρFσρ − Φσψσ, (1.73)

dTξ
µ = Φµ − ξσ∇σξ, (1.74)

dTc = ϕ− 1

2
[c, c]− ξσDσc−

1

2
ξσξρFσρ + ξσψσ, , (1.75)

where d2T = 0 and equivariant classes are restricted to the basic subcomplex i.e.,

satisfy (1.62) and (1.63).

1.4.2 Cartan Model

While working with a strictly nilpotent di�erential has its bene�ts, it is possible to

trade this feature for an algebraic solution to the horizontal constraint of (1.62). We

do so in two steps. First we conduct the Mathai-Quillen isomorphism which brings

us to the so-called BRST, or intermediate model. Next, ignoring all vertical �elds,

we project onto the invariant subcomplex, to arrrive at the Cartan model.
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Turning to the Mathai-Quillen isomorphism, de�ne the operator

γ = IXa ⊗ c̃a + IXµ ⊗ ξµ, (1.76)

factoring with respect to the total complex as in (1.60). This operator only acts non-

trivially on the space Ω(M), and among the generators, only on Ψ and ψ. Moreover,

exponentiating γ and, using it to conjugateour di�erential operators, we �nd

eγ(1⊗ IA + IXA ⊗ 1)e−γ = 1⊗ IA, (1.77)

eγ(1⊗ LA + LXA ⊗ 1)e−γ = (1⊗ LA + LXA ⊗ 1). (1.78)

This indicates that conjugating by eγ solves the horizontal condition on Ω(M). We

de�ne the new di�erential

dC = eγdTe
−γ, (1.79)

which we call the Cartan di�erential. In the given form, the di�erential inherits the

nilpotency of dT. Acting on the �elds of the Weil model, we obtain

dCgµν = Ψµν −∇µξν −∇νξµ, (1.80)

dCΨµν = ∇µΦν +∇νΦµ − ξσ∇σΨµν − (∇µξ
σ)Ψσν − (∇νξ

σ)Ψµσ, (1.81)

dCΦ
µ = −ξσ∇σΦ

µ + Φσ∇σξ
µ, (1.82)

dCξ
µ = Φµ − ξσ∇σξ

µ, (1.83)

and

dCAµ = ψµ +Dµc− ξσFσµ, (1.84)

dCψµ = −Dµϕ+ ΦσFσµ − [c, ψµ]− ξσDσψµ − (∇µξ
σ)ψσ, (1.85)
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dCϕ = −Φσψσ − [c, ϕ]− ξσDσϕ, (1.86)

dCc = ϕ− 1

2
[c, c] +

1

2
ξσξρFσρ. (1.87)

We call this new algebra the BRST model. Its complex is given by

(Ω(M)⊗ (W(LieG))horizontal)
G , (1.88)

namely, the invariant classes of the total Weil model complex, but now with only the

need to restrict to horizontal classes on the Weil algebra tensorand.

Next, we can further restrict our complex by projecting to the horizontal subcom-

plex of the Weil algebra. The vertical �elds are identically the �elds c and ξ, and thus

any class which contains them is not an element of our cohomology. Thus we need

only consider

(Ω∗(M)⊗ S∗(LieG))G . (1.89)

Further, inspecting (1.80)-(1.87), we can make the following observation. Considering

the particular Lie derivative

Lc̃+ξ = c̃a(1⊗ L(a,0) + LXa ⊗ 1) + ξµ(1⊗ L(0,µ) + LXµ ⊗ 1), (1.90)

we have

Lc̃+ξgµν = −∇µξν −∇νξµ, (1.91)

Lc̃+ξΨµν = −ξσ∇σΨµν − (∇µξ
σ)Ψσν − (∇νξ

σ)Ψµσ, (1.92)

Lc̃+ξΦ
µ = −ξσ∇σΦ

µ + Φσ∇σξ
µ, (1.93)

Lc̃+ξAµ = Dµc− ξσFσµ, (1.94)
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Lc̃+ξψµ = −[c, ψµ]− ξσDσψµ − (∇µξ
σ)ψσ, (1.95)

Lc̃+ξϕ = −[c, ϕ]− ξσDσϕ. (1.96)

These give exactly the last terms on the right hand sides of (1.80)-(1.82) and (1.84)-

(1.86). Hence, when considered as elements inside the subcomplex (1.89), each of the

above terms vanishes due to the invariant projection. Therefore we can freely project

the action of our Cartan di�erential to this invariant subcomplex leading to the �nal

algebra of the Cartan model. We elect to rename dC to Q in order to distinguish it

from the di�erential prior to the invariant projection. Hence, we arrive at

Qgµν = Ψµν , QAµ = ψµ, (1.97)

QΨµν = ∇µΦν +∇νΦµ, Qψµ = −Dµϕ+ ΦσFσµ, (1.98)

QΦσ = 0, Qϕ = −Φσψσ. (1.99)

The price of this projection is that we have lost the general nilpotency of dC and

instead have

Q2 = δϕ+ΦσAσ + LΦ = δϕ + L(A)
Φ , (1.100)

where we recall in (1.8) that δϕ is the right-action of a gauge transformation by ϕ, LΦ

is the Lie derivative of the four manifold X along the vector �eld Φ, and we introduce

the notation L(A)
Φ to indicate the gauge covariant Lie derivative of X along the vector

�eld Φ, namely LΦ where we replace all metric covariant derivatives ∇ by the gauge

and metric covariant derivatives DA. This di�erential is nilpotent on the invariant

subcomplex of (1.89).

All together, noting that the Mathai-Quillen isomorphism is actually a quasi-
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isomorphism, we obtain the desired result of

HG(M) ∼= H((Ω∗(M)⊗ S∗(LieG))G,Q). (1.101)

We note in passing that the transformation laws (1.97)-(1.99) have appeared previous

in the work of [42] (see also the work [43] for a similar construction), though in a

di�erent context. In particular, their degree two �eld, denoted γµ is required to be a

Killing vector �eld, whereas we do not assume that X has any isometries and allow

Φµ to be any vector �eld. Further, in these works, γµ is constructed as a bilinear

in Majorana ghosts of a supergravity theory, whereas, as we will see, our Φµ �eld

emerges as a ghost �eld for the vector supersymmetry of a twisted and truncated

theory of supergravity.

1.4.3 Anti-Ghost Multiplets

Having identi�ed the Cartan model for theG-equivariant cohomology ofM, we wish to

include the other �elds in the N = 2 twisted vector multiplet. To do so we introduce

the four additional �elds from Table 2 which divide into what we call the projection

multiplet (λ, η) and the localization multiplet (χ,H). These will be understood as two

modules forHG(M) and their names re�ect their role in the Mathai-Quillen formalism.

Note that

Q
∣∣
Ψ,Φ=0

= Q, (1.102)

on the Cartan base multiplet (A,ψ, ϕ). On the anti-ghost multiplets, the action of Q

is introduced in (1.6) and (1.7) as a contractible pair, namely, de�ned so that Q on

the lower degree �eld gives the higher degree �eld, and, upon acting on the higher

degree �eld, is in agreement with Q2 = δϕ. We wish to extend the action of Q to one

of Q on the λ, η, χ and H �elds such that it reproduces Q when Φ,Ψ = 0, and that
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it maintain Q2 = δϕ + L(A)
Φ .

We �rst turn to the projection multiplet. In HG(A(P )) we have

Qλ = η, Qη = [ϕ, λ]. (1.103)

where λ and η are adjoint valued scalar �elds which are commuting and anti-commuting

respectively. With such simple form, there is one obvious extension to Q, namely

Qλ = η, Qη = [ϕ, λ] + ΦσDσλ. (1.104)

Indeed, this is what we do, as it satis�es (1.100). Sometimes things are simple.

Sometimes thing are complicated. The localization multiplet of (1.7) gives

Qχµν = Hµν , QHµν= [ϕ, χµν ], (1.105)

Note that both χ and H are self-dual �elds, a condition that has explicit metric

dependence. Hence our variation in the combined Cartan model requires a variation

of the self-dual constraint. Following the methods of Appendix D, a minimal extension

this action to Q is to take

Qχµν = Hµν − (Ψσ
[µχν]σ)

−, (1.106)

where the second term on the right hand side is the required anti-self-dual part cf.

(D.3)-(D.13). Next, we take QHµν to be whatever is necessary for the algebra to
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close. Hence, de�ning Bµν = Ψσ
[µχν]σ and using (D.14), we compute

Q2χµν = QHµν −Q(B−
µν)

= QHµν − (QBµν)
− − (Ψσ

[µB
+
ν]σ)

− + (Ψσ
[µB

−
ν]σ)

+

= QHµν − (∇σΦ[µχν]σ +∇[µΦ
σχν]σ)

− + (ΨσρΨρ[µχν]σ)
−

+ (Ψσ
[µ(Hν]σ − B−

ν]σ))
− − (Ψσ

[µB
+
ν]σ)

− + (Ψσ
[µB

−
ν]σ)

+,

= QHµν + ((∇µΦ
σ)χσν + (∇νΦ

σ)χµσ)
− + (Ψσ

[µHν]σ)
− − (Ψσ

[µ(Ψ
ρ
σχν]ρ))

−

− (Ψσ
[µB

−
ν]σ)

− − (Ψσ
[µB

+
ν]σ)

− + (Ψσ
[µB

−
ν]σ)

+.

(1.107)

Since Ψ is symmetric in its indices, we have

Ψσ
[µBν]σ = −1

2
Ψσ

[µ(Ψ
ρ
σχν]ρ), (1.108)

and

(Ψσ
[µBν]σ)

− = 0. (1.109)

Hence, we �nd

Q2χµν = QHµν + ((∇µΦ
σ)χσν + (∇νΦ

σ)χµσ)
− + (Ψσ

[µHν]σ)
− + (Ψσ

[µB
−
ν]σ)

+. (1.110)

Thus, the only consistent choice to maintain (1.100) is that

QHµν = [ϕ, χµν ] + ΦσDσχµν + ((∇µΦ
σ)χσν + (∇νΦ

σ)χµσ)
+

− (Ψσ
[µHν]σ)

− + (Ψσ
[µ(Ψ

ρ
[σχν]]ρ)

−)+,

(1.111)
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which leads to

Q2χµν = [ϕ, χµν ] + ΦσDσχµν + (∇µΦ
σ)χσν + (∇νΦ

σ)χµσ

= (δϕ + L(A)
Φ )χµν . (1.112)

It will turn out that (1.111) is not only a consistent choice, but the correct choice, as

we do have

Q2Hµν = (δϕ + L(A)
Φ )Hµν . (1.113)

We postpone the proof until the next section when we consider the bidegree splitting

of Q.

1.4.4 Summary

Our full Cartan model with anti-ghost modules is given by

Qgµν = Ψµν , QAµ = ψµ, (1.114)

QΨµν = ∇µΦν +∇νΦµ, Qψµ = −Dµϕ+ ΦσFσµ (1.115)

QΦσ = 0, Qϕ = −Φσψσ, (1.116)

Qλ = η, (1.117)

Qη = [ϕ, λ] + ΦσDσλ, (1.118)

Qχµν = Hµν − (Ψσ
[µχν]σ)

−, (1.119)

QHµν = [ϕ, χµν ] + ΦσDσχµν + ((∇µΦ
σ)χσν + (∇νΦ

σ)χµσ)
+

− (Ψσ
[µHν]σ)

− + (Ψσ
[µ(Ψ

ρ
[σχν]]ρ)

−)+.

(1.120)
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There are a few comments which can be made about this algebra. First, in terms of

the the other self-dual auxiliary �eld D, which is related to H via

Hµν = F+
µν −Dµν , (1.121)

we have

Qχµν = F+
µν −Dµν − (Ψσ

[µχν]σ)
−, (1.122)

QDµν = 2(D[µψν])
+ − [ϕ, χµν ]− ΦσDσχµν − ((∇µΦ

σ)χσν − (∇νΦ
σ)χσµ)

+

+ (Ψσ
[µF

−
ν]σ)

+ − (Ψσ
[µDν]σ)

− +
1

2
ΨρσΨρ[µχν]σ. (1.123)

We will typically use D when we are working with our action.

Turning to the closure of the algebra, let us begin by noting that both HG(A(P ))

and HDiff+(X)(X) sit as subalgebras of HG(X). Each can be obtained by isolating to

either side of the semi-direct product G ⋊ Diff+(X). Explicitly on the �elds, turning

o� all gravity �elds, expect the metric, we see that

Q
∣∣
Ψ=0,Φ=0

= Q. (1.124)

Likewise, ignoring all gauge �elds, we have

Q
∣∣
g,Ψ,Φ

= d. (1.125)

This can e�ectively be summarized by splitting Q into bidegrees of (p, q) where p

is the gauge degree inherited from the HG(A) model shown in Table 3 and q is the
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gravity degree from the HDiff+(X)(Met(X))model shown in Table 4. We can then write

Q = Q(1,0) +Q(0,1) +Q(−1,2). (1.126)

We denote the bidegree di�erentials as

Q(1,0) = Q, (1.127)

Q(0,1) = d̃, (1.128)

Q(−1,2) = K+∆H . (1.129)

HereQ acts as (1.4)-(1.7) and zero everywhere else. Next, d̃, as explained in Appendix

D, is the lift of the di�erential d to the total space of the bundle Ω2,+(X, adP ) over

Met(X). It acts as d on g and Ψ as in (1.10) and (1.11) and, on our self-dual �elds χ

and H, it is the induced projected connection acting as

d̃χµν = −(Ψσ
[µχν]σ)

−, d̃Hµν = −(Ψσ
[µHν]σ)

−. (1.130)

On all other �elds, it acts as zero. Finally, in a break from the other degrees we have

K+∆H in degree (−1, 2). This splitting is given below in the nonzero transformations

as

Kψµ = ΦσFσµ , (1.131)

Kϕ = −Φσψσ , (1.132)

Kη = ΦσDσλ , (1.133)

KHµν = ΦσDσχµν + ((∇µΦ
σ)χσν − (∇νΦ

σ)χσµ)
+ , (1.134)



82

and

∆HHµν = (Ψσ
[µ(Ψ

ρ
[σχν]]ρ)

−)+ . (1.135)

We can, on all �elds except (χ,H) (hence ignoring d̃
∣∣
χ,H

and ∆H), summarize the

algebra with the relations

Q2 = δϕ, d̃2 = LΦ

∣∣
g,Ψ,Φ

, (1.136)

K2 = {Q, d̃} = {d̃,K} = 0, {Q,K} = L(A)
Φ

∣∣
FA,ψ,ϕ,η,λ

, (1.137)

where we note that the �nal relation is only true on �elds that transform in the adjoint

representation (thus FA as opposed to A).

The story is far more subtle on the self-dual �elds, χ and H. There, we still have

Q2 = δϕ, K2 = {Q, d̃} = 0, (1.138)

but now, on account of the metric dependence of the self-duality, the other relations

change. First, we see that, due to ∆H , there are new relations of

{Q,∆H}χµν = (Ψσ
[µ(Ψ

ρ
[σχν]]ρ)

−)+, ∆2
Hχµν = {∆H ,K}χµν = 0, (1.139)

{Q,∆H}Hµν = (Ψσ
[µ(Ψ

ρ
[σHν]]ρ)

−)+, ∆2
HHµν = {∆H ,K}Hµν = 0. (1.140)

Further, we have

{Q,K}χµν = (L(A)
Φ χµν)

+, (1.141)

{Q,K}Hµν = (L(A)
Φ Hµν)

+, (1.142)
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exposing the failure to vary the Hodge star inside the self-dual projection. This is

of course cured by the variation induced by the projected connection d̃ di�erential.

Unfortunately, the cure comes with a symptom, as we have

d̃2χµν =
1

2

√
gϵµναβ

(
1

2
(∇σΦ

σ)gαα
′
gββ

′ − (∇αΦα′
+∇α′

Φα)gββ
′
)
χα′β′ +

1

2
ΨρσΨρ[µχν]σ,

= (L(A)
Φ χ)µν − (L(A)

Φ χ)+µν +
1

2
ΨρσΨρ[µχν]σ (1.143)

d̃2Hµν =
1

2

√
gϵµναβ

(
1

2
(∇σΦ

σ)gαα
′
gββ

′ − (∇αΦα′
+∇α′

Φα)gββ
′
)
Hα′β′ +

1

2
ΨρσΨρ[µHν]σ

= (L(A)
Φ H)µν − (L(A)

Φ H)+µν +
1

2
ΨρσΨρ[µHν]σ. (1.144)

As we recall from our discussion of the variation of self-dual forms, the �rst two

terms in each computation are the variations of the Hodge star operator, and, when

combined with (1.141)+(1.142) is precisely what is necessary to change the self-dual

part of a Lie derivative to the normal Lie derivative. The addition terms are the

curvature of the projected connection which can be rewritten as

1

2
ΨρσΨρ[µχν]σ = −(Ψσ

[µ(Ψ
ρ
[σχν]]ρ)

−)+, (1.145)

and

1

2
ΨρσΨρ[µHν]σ = −(Ψσ

[µ(Ψ
ρ
[σHν]]ρ)

−)+, (1.146)

as shown in Appendix E.1. Hence the potential problem terms are precisely the

opposite of those in (1.139) and (1.140) respectively. This is good, but there is still

need to check that the remaining anticommutators do not contribute any additional

terms. On χ, this is simple, as we trivially �nd

{d̃,K}χµν = {d̃,∆H}χµν = 0. (1.147)
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The story is not so simple on H. There we have

{d̃,K}Hµν =
1

2
Ψσ[µ(∇ρΦσ +∇σΦρ)χν]ρ −

1

2
Ψσρ(∇[µΦρ +∇ρΦ[µ)χν]σ, (1.148)

{d̃,∆H}Hµν = −1

2
Ψσ[µ(∇ρΦσ +∇σΦρ)χν]ρ +

1

2
Ψσρ(∇[µΦρ +∇ρΦ[µ)χν]σ, (1.149)

so that

{d̃,K} = −{d̃,∆H}. (1.150)

We squirrel the proof of this rather nontrivial relation away in Appendix E.2. All

together, the relations (1.138)-(1.144) and (1.148)+(1.149) ensures that the localiza-

tion multiplet can be consistently included in the model of di�eomorphism and gauge

equivariant cohomology.

All together, we have shown that our transformation laws (1.114)-(1.120) satisfy

the desired relation

Q2 = δϕ + L(A)
Φ (1.151)

on all the �elds of HG(X) and its anti-ghost multiplets. We recognize this as a

nontrivial result beyond the construct of the base of the combined Cartan model.

Before moving on to the next section, let us remark on the generality of our Cartan

model. Outside of the self-dual �elds, we have at no point made use of the dimension

of X. Supposing we had a smooth six manifold Y, the self-dual �elds would then be

elements of Ω3,+
g (Y, adP ), so that χ and H are three form �elds. Taking ∆HH equal

to negative the curvature of the projected connection on Ω3,+
g (Y, adP ) over Met(Y)

and KH = (LΦχ)
+, we expect the algebra to once again close. The one nontrivial

check would be to con�rm that the relation {d̃,K} = −{d̃,∆H} still holds on H. At

present we do not have a geometric understanding of this relation in four dimensions,

but it is reminiscent of some sort of Bianchi identity. This procedure could be also
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checked for any manifold of even dimension.

Returning to four dimensions, let us turn to the physical derivation of the model.

1.5 Excursus: Twisted Supergravity

Soon after Witten exposed the world to his topological twist, Karlhede and Ro£ek

identi�ed the resulting transformation laws as a truncation and twist of N = 2 con-

formal supergravity [47]. Likewise, but with far more complexity, the Cartan model

with the anti-ghost multiplets just constructed is remarkably found lurking inside an

appropriately truncated and twisted model of N = 2 supergravity coupled to a vector

multiplet on a symmetric gravitino background. In this section we will provide an

criminally cursory review of Euclidean supergravity as constructed from superconfor-

mal gravity and then summarize the forthcoming work with Moore, Ro£ek, Saxena,

and the present author in [12] to arrive at the truncated and twisted theory.34 The

structure of this maneuver is summarized in Figure 2 below. In moving from (1) to

(2) of the �gure, we break the superconformal group by gauge �xing certain compen-

sating �elds multiplets as well as conforming to the so-call conventional constraints.

(2) to (3) is a new to this work and full details are found in [12]. (3) to (4) is renor-

malization group �ow, held as an exact process due to our Q supersymmetry. We

will focus on the move from (3) to (4), and present the original work of specializing

to a symmetric gravitino background which, after a �eld rede�ntion, is identical to

the Cartan model of HG(X).

We must disclaim that it is not our goal to provide any semblance of either intro-

duction or review of supergravity, so we point the interested reader to the standard

textbooks on the subject [31, 84]. Nevertheless, we will provide some light verbiage

34We note that our �twisted supergravity� is distinct from that of [11] for numerous reasons, the
most salient of is that we are working with non-dynamical supergravity �elds and our actions do
not contain the Einstein-Hilbert term.
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on the matter.

Figure 2: The above diagram summarizes the relationship between the various theo-
ries. We follow the number path.

1.5.1 Euclidean Supergravity

Supergravity is the gauge theory of the appropriate supersymmetry group of the

symemtries of spacetime. Therefore, the supergravity of interest to us, namely Eu-

clidean supergravity, is the gauge theory of the N = 2 super Euclidean group (whose

algebra is given by SEN=2 in (0.50)+(0.51)). What this means is that for every sym-

metry, including the odd ones, we introduce both a connection and a local (dependent

on spatial coordinates) transformation parameter. For a dynamical theory, all these

�elds are given kinetic terms and integrated over in the full theory, but for our pur-

poses we will only consider these �elds to be non-dynamical background entities.

To arrive at an o�-shell formulation of these theories one starts with the super-

conformal group as opposed to the super Euclidean group.35 The even part of this

group is the conformal group SO(5, 1), which contains transformations that preserve

35We point to [27] for a modern introduction to the representation theory of the superconformal
groups.
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angles. It contains the Euclidean group R4⋊SO0(4), the group of dilatations SO(1, 1)

generated by D, as well as the special conformal transformations Kµ.
36 In addition,

we have R-symmetries, whose Lie algebra is su(2)R ⊕ so(1, 1)R. On the odd side of

the superconformal algebra, we have the usual eight Q supersymmetries as well as

the eight conformal supersymmetries S, which both can be split into left and right

Weyl spinors.37 Following [12], we collect this data together in the table below

Symmetry Connection Parameter

Translations Vielbein eµ
a ξa

Rotations Spin Connection ωµ
ab λab

Dilatations Dilatation Connection bµ Θ(D)

Special Conformal
Transformations

Special Conformal
Connection

fµ
a ΛK

a

su(2) R Symmetry su(2)R Connection ωRµ
i
j Θi

j

su(1, 1) R Symmetry su(1, 1)R Connection A
(R)
µ Θi

j

Supersymmetry Gravitino Ψµ
iA,Ψµ

iȦ ϵi
A, ϵi

Ȧ

S Supersymmetry S Gravitino Sµ
iA, Sµ

iȦ ηi
A,ηi

Ȧ

Table 5: The symmetry content of Euclidean N = 2 superconformal gravity.

Above, a, b are frame indices and all others are as in our original N = 2 super-

symmetry of Section 0.2. We note that here, unlike in the case of regular N = 2

supersymmetry, each of the parameters is a function on X, and thus, for example,

∂µϵi
A ̸= 0. We also note that the metric of X is given by gµν = ηabeµ

aeν
b, where

ηab = diag[1, 1, 1, 1] is the �at Euclidean metric.

In addition to the gauge connections, to work o�-shell, we must add three auxiliary

�elds. They are a scalar D , a two form Tab, and a spinor Ξi. All together, these �elds

36The action of dialations take xµ 7→ λxµ for some λ ∈ R − {0} and the special conformal
transformations is the series of an inversion, a translation, followed by a �nal inversion and can be
loosely understood as translations of in�nity. Explicitly, the special conformal transformation maps

xµ 7→ xµ−bµx2

1−2xµbµ+b2x2 .
37Our intuitive understanding of the special conformal transformation as the translation at in-

�nity is further enhanced by the fact that the anti-commutator of the conformal supersymmetries
is proportional Kµ. This is a direction analogy to the fact that supersymmetry Q squares to a
translation Pµ. In fact, S is the conjugation of Q by the inversion operator.
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make up the Weyl multiplet, which is an o�-shell representation of the conformal

superalgebra.

At present, each of the connections in Table 5 is an independent �eld, but this

leads to an issue with the action of spatial translations. Therefore, to arrive at a phys-

ical theory one must impose the so called �conventional constraints.� In superspace

formalism, these are constraints on the form of the supertorsion, as more thoroughly

explained in [58, 59]. For our purposes, they are conditions on the supercurvatures of

spatial translations, supersymmetry, and rotations that can be algebraically solved.

The result is that the gauge �elds ωµ
ab, fµ

a, and Sµ
iA, Sµ

iȦ are no longer independent

and become composite �elds.

This concludes the depth to which we review Euclidean supergravity, and now we

turn to the truncation and twist.38

1.5.2 The Twist

Recall from our discussion of the original twist, that we chose an isomorphism between

the SU(2)R principal bundle PR and the SO(3) principal bundle P+. This led to the

relation

ωRµ
ijδAj = ω+

µ
ABδiB (1.152)

This was recognized by Karlhede and Ro£ek as a statement in conformal supergravity

which led to the construction of the scalar superchargeQ, thus givingWitten's original

twist a physically motivated derivation.

In [12] it is realized that one can generalize this idea to keep not only a scalarQ but

also an unconstrained local vector supersymmetry ϵAȦ. The associated connection

38For more extensive treatment of the subject, we direct those interested in the following. N = 1
supergravity in four dimensions with Lorentzian signature was developed in [28, 44, 45, 46]. This
was was extended to N = 2 in the series of papers [14, 15, 16, 18, 19, 20]
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for this vector supersymmetry is the vector gravitino Ψµ
AȦ. We can reexpress the

gravitino in four components as Ψµν = eν,AȦΨµ
AȦ, which we crucially note is not

entirely symmetric at present.

Further, one can truncated the Weyl multiplet of this theory through a series of

non-trivial constraints on the gauge �elds to arrive at a minimal theory which contains

a scalar supersymmtry and a gravitino. In particular, we can gauge �x the �elds

bµ = 0, Ψµ
AB = 0, (1.153)

A(R)
µ = 0, ΞAB = 0. (1.154)

To ensure that these constraints are consistent, one must also show that this gauge

�xing is maintained under a supersymmetry transformation. This requires one to

check that that

δbµ = 0, δΨµ
AB = 0, (1.155)

δA(R)
µ = 0, δΞAB = 0. (1.156)

These conditions lead to a cascade of further constraints on the gauge �elds, which

we will not reproduce here and instead point to [12]. All together, when the dust is

settled, everything is consistent and the resulting independent �elds are the metric gµν ,

the (not entirely symmetric) gravitino Ψµν , and the bosonic anti-self-dual auxiliary

�eld T−
µν . In addition, the remaining supersymmetry parameters are the constant

scalar ϵ, a vector ϵµ, a constant scalar η0, and a self-dual two form η+
µν .
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1.5.3 Twisted Weyl Multiplet

The twisted and truncated Weyl multiplet transformations are foudn to be

δgµν = ϵΨ(µν), (1.157)

δΨ(µν) = ∇µϵν +∇νϵµ + η0gµν , (1.158)

δΨ[µν] = ∇µϵν −∇νϵµ −
1

2
ϵΨµ

ρΨνρ − ϵT−
[µν] − η+

[µν], (1.159)

δT−
[µν] = −ϵΨ[µ

ρT−σ
ν]gρσ + ϵρR(Q)−µν,ρ, (1.160)

where

R(Q)−µν,ρ = 2J −
µν,ρ −

(
gρ[µJ +

ν]σ,δg
δσ − gρ[µJ −

ν]σ,δg
δσ
)−

(1.161)

Jµν,ρ = ∇[µΨν]ρ. (1.162)

In the above, we split Ψµν into the symmetric and antisymmetric parts in order to

prevent confusion with the symmetric gravitino Ψµν from our construction of the

Cartan model. We further note that various rescalings have been taken to streamline

our analysis.

The goal of this section will be to show, that, after introducing BRST ghosts for the

remaining local supersymmetries, we can consistently restrict to a background where

the antisymmetric part of the gravitino vanishes. Moreover, the resulting algebra is

exactly that of HDiff+(X)(Met(X)).

We begin by introducing bosonic ghosts for the vector supersymmetry and the S

supersymmetries. To do so, we split each fermionic transformation parameter into

ϵµ = ϵΦµ, η0 = ϵη0, and η+
[µν] = ϵη+[µν]. (1.163)
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We note that this is a restriction of the transformation laws, as we have taken the

fermionic part of each parameter to be identical to that of the constant scalar ϵ. At

present, Φµ, η0 and η+[µν] are all unconstrained ghost �elds. With all the fermionic

variational parameters aligned, we can introduce the di�erential operators dt, which,

acting on any �eld A, is de�ned as

δA = ϵdtA. (1.164)

Extracting the parameter ϵ from the transformation laws, we then arrive at39

dtgµν = Ψ(µν), (1.165)

dtΨ(µν) = ∇µΦν +∇νΦµ + gµνη0, (1.166)

dtΨ[µν] = ∇µΦν −∇νΦµ −
1

2
Ψµ

ρΨνρ − T−
[µν] − η+[µν], (1.167)

dtT
−
[µν] = Ψ[µ

ρT−σ
ν]gρσ + ΦρR(Q)−µν,ρ. (1.168)

Here, in order to agree with the Cartan model, we append this list with

dtΦ
µ = 0. (1.169)

With �cosmetics� aside, we begin our approach to the Cartan model of equivariant

cohomology in earnest. First, we freely set

η0 = 0, and dtη0 = 0. (1.170)

39This procedure may cause confusion for those steeped in the formalities of SUGRA. For these
esteemed colleagues, we present the following construction, which is functionally identical. We
introducing a Grassmann valued constant Λ and a constant commuting scalar supersymmetry ghost
cϵ. Then ϵ is formally replaced by Λcϵ, ϵ

µ by ΛΦµ, and η+
µν by Λc+µν for a self-dual commuting two

form ghost c+µν . We then restrict to the subspace where η0 = 0 and choose cϵ = 1. Finally, we de�ne
the di�erential dt on a �eld A as δA = ΛdtA.
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Next to turn o� the antisymmetric part of the gravitino and set Ψ[µν] = 0, we must

enforce dtΨ[µν] = 0, so that no antisymmetric parts sneak in through a supersymmetry

transformation. Since η+[µν] is unconstrained, the self-dual part of dtΨ[µν] = 0 can be

set to zero by restricting to a background where

η+[µν] = (∇µΦν −∇νΦµ)
+ − 1

2
(Ψµ

ρΨνρ)
+. (1.171)

On the anti self-dual side, we have natural choice of

T−
[µν] = (∇µΦν −∇νΦµ)

− − 1

2
(Ψµ

ρΨνρ)
−. (1.172)

Here, even though T−
[µν] is an auxiliary �eld, it is not fully unconstrained and has a

�xed variation in the Weyl multiplet. Thus, in order for this background value of

T−
[µν] to be consistent with the theory, we also need to check that

Ψ[µ
ρT−σ

ν]gρσ + ΦρR(Q)−µν,ρ
?
= dt

(
(∇µΦν −∇νΦµ)

− − 1

2
(Ψµ

ρΨνρ)
−
)

(1.173)

Beginning on the left hand side, let us interrogate the supercurvature R(Q). Exploit-

ing the full extent of the self-dual and anti-self-dual projections, we have

R(Q)−µν,ρ = (∇µΨνρ −∇νΨµρ)
− +

1

2
gδσ

(
gρµ

(
J −
νσ,δ − J +

νσ,δ

)
− gρν

(
J −
µσ,δ − J +

µσ,δ

))
= (∇µΨνρ −∇νΨµρ)

− − 1

4

√
ggδσ

(
gρµϵνσληJ λη

δ − gρνϵµσληJ λη
δ

)
,

= (∇µΨνρ −∇νΨµρ)
− − 1

4

√
g
(
gρµϵνσληJ λη,σ − gρνϵµσληJ λη,σ

)
, (1.174)

where we have use the de�ntional fact that

J ±
µν,ρ =

1

2
Jµν,ρ ±

1

4

√
gϵµνληJ λη

ρ. (1.175)
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Next, given that we are working under the assumption that are gravitinos are now

completely symmetric, it follows that J µνσ will be a sum of two terms which each

have two symmetric indices. Thus, when fully contracted with the completely anti-

symmetric tensor as in the second term of R(Q)−µν,ρ above, both terms vanishes.

Therefore we have

R(Q)−µν,ρ = (∇µΨνρ −∇νΨµρ)
−. (1.176)

Pluggin this back into dtT
−
[µν] along with our choice of T−

[µν] in (1.172), we have the

left hand side of (1.173) as

dtT
−
[µν] = −(Ψσ

[µT
−
ν]σ) + Φσ(∇µΨνσ −∇νΨµσ)

−

= −(Ψσ
[µT

−
ν]σ)

+ − (Ψσ
[µT

−
ν]σ)

− + Φσ(∇µΨνσ −∇νΨµσ)
−

(1.177)

Turning to the right hand side of (1.173), keeping our lessons about varying anti-

self-dual conditions in mind, we compute

dtT
−
[µν] = dt

(
(∇µΦν −∇νΦµ)

− − 1

2
(Ψµ

ρΨνρ)
−
)

= −(Ψσ
[µT

−
ν]σ)

+ +

(
Ψσ

[µ

(
(∇ν]Φσ −∇σΦν])

+ − 1

2
(Ψν]

ρΨσρ)
+

))−

+ dt

(
(∇µΦν −∇νΦµ)−

1

2
(Ψµ

ρΨνρ)

)−

= −(Ψσ
[µT

−
ν]σ)

+ +

(
Ψσ

[µ

(
(∇ν]Φσ −∇σΦν])

+ − 1

2
(Ψν]

ρΨσρ)
+

))−

+
1

2
Ψρσ(ΨµσΨνρ)

− +
1

2
(Ψνσ∇µΦ

σ −Ψµσ∇νΦ
σ)−

+
1

2
(Ψµ

σ∇σΦν −Ψν
σ∇σΦµ)

− + Φσ (∇µΨνσ −∇νΨµσ)
−

= −(Ψσ
[µT

−
ν]σ)

+ −
(
Ψσ

[µ(∇ν]Φσ −∇σΦν])
−)− + Φσ (∇µΨνσ −∇νΨµσ)

−
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− 1

2

(
Ψσ

[µ(Ψν]
ρΨσρ)

+
)−

+
1

2
(Ψµ

σ(Ψν
ρΨσρ))

−

= −(Ψσ
[µT

−
ν]σ)

+ −
(
Ψσ

[µ

(
(∇ν]Φσ −∇σΦν])

− − 1

2
(Ψν]

ρΨσρ)
−
))−

+ Φσ (∇µΨνσ −∇νΨµσ)
−

= −(Ψσ
[µT

−
ν]σ)

+ − (Ψσ
[µT

−
ν]σ)

− + Φσ(∇µΨνσ −∇νΨµσ)
− (1.178)

Joyfully, we can then strip (1.173) of the question mark looming over the equality,

having veri�ed that the choice

T−
[µν] = (∇µΦν −∇νΦµ)

− − 1

2
(Ψµ

ρΨνρ)
−. (1.179)

is consistent.

In summary, we have started with the algebra of the Weyl mutiplet of tSUGRA

as

dtgµν = Ψ(µν), (1.180)

dtΨ(µν) = ∇µΦν +∇νΦµ + gµνη0 (1.181)

dtΨ[µν] = ∇µΦν −∇νΦµ −
1

2
Ψµ

ρΨνρ − T−
[µν] − η+[µν] (1.182)

dtT
−
[µν] = Ψ[µ

ρT−σ
ν]gρσ + ΦρR(Q)−µν,ρ (1.183)

Then enforcing the following consistent constraints,

dtΦ
µ = 0, Ψ[µν] = 0, η0 = 0, (1.184)

η+[µν] = (∇µΦν −∇νΦµ)
+ − 1

2
(Ψµ

ρΨνρ)
+, (1.185)

T−
[µν] = (∇µΦν −∇νΦµ)

− − 1

2
(Ψµ

ρΨνρ)
, (1.186)



95

when we restrict to the symmetric gravitino background, the nontrivial part of the

algebra reduces to

dtgµν = Ψµν , (1.187)

dtΨµν = ∇µΦν +∇νΦµ, (1.188)

dtΦ
µ = 0. (1.189)

This is precisely the transformation laws of HDiff+(X)(Met(X)) in (1.10)+(1.11). Never

satis�ed, let us see how to incorporate the vector multiplet �elds into the twisted

conformal supergravity approach.

1.5.4 Twisted Vector Multiplet

It is a typical procedure to couple conformal supergravity to aN = 2 vector multiplet,

as can be found in [17, 31, 54]. Under the truncation and twisting, and before moving

to the symmetric gravitino background, the �elds transform as

δAµ = ϵψµ + ϵσχσµ − ϵµη + ϵσΨµσλ, (1.190)

δψµ =
1

2
ϵΨµ

σψσ − ϵDµϕ+ ϵσ(F̂
−
σµ + λT−

σµ +Dσµ)− ϵµ[λ, ϕ], (1.191)

δϕ = −ϵσψσ, (1.192)

δη = ϵσDσλ− ϵ[λ, ϕ]− η0λ, (1.193)

δλ = ϵη, (1.194)

δχµν = −ϵ(Ψ[µ
σχν]σ)− 4(ϵ[µDν]λ)

+ + ϵ(F̂
+

µν −Dµν) + η+
µνλ, (1.195)

δDµν = ϵ(Ψ[µ
σDν]σ) + 2ϵ(D[µψν])

+ + 2(ϵ[µD
σχν]σ)

+ − 2(ϵ[µDν]η)
+

− ϵ[ϕ, χµν ] + 4(ϵ[µ[ϕ, ψν]])
+, (1.196)
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which is expressed supercovariantly. The supercovariant expressions are given by

DµAν = DµAν −
1

2
Ψµ

σχσν +
1

2
Ψµνη −Ψµ

σΨνσλ, (1.197)

Dµψν = Dµψν −
1

2
Ψµ

σ(F̂
−
σν + λT−

σν +Dσν) +
1

2
Ψµν [λ, ϕ], (1.198)

Dµϕ = Dµϕ+
1

2
Ψµ

σψσ, (1.199)

Dµλ = Dµλ, (1.200)

Dµη = Dµη −
1

2
Ψµ

σDσλ+
1

2
√
2
λSµ, (1.201)

Dµχνσ = Dµχνσ + 2(Ψµ[νDσ]λ)
+ −

√
2λS+µ,[νσ], (1.202)

F̂µν = Fµν +Ψ[µ
σχν]σ +Ψ[µν]η +

1

2
Ψµ

σΨνσλ. (1.203)

These supercovariant objects are built by requiring that the supersymmetric varia-

tions, say, computed δ(DµA) for some �eld A, do not contain any derivatives of the

supersymmetric variation parameters. We arrive at the supercovariant curvature in a

similar fashion. Finally, the Sµ and S+µ,[νσ] are connections for the S-supersymmetry,

having split into the scalar and self-dual symmetries respectively under the twist.

They are given by

Sµ =
1√
2
(−∇σΨµσ +∇µΨσ

σ) (1.204)

S+µ,[νσ] =
1√
2
(∇νΨσµ −∇σΨνµ)

+ +
1√
2

(
−gµ[ν∇ρΨσ]ρ + gµ[ν∇σ]Ψρ

ρ
)+

(1.205)

As with the twisted Weyl multiplet, we have taken various �eld rescalings in order to

decrease the clutter in our computations. Next, let us reintroduce the bosonic ghosts

of the previous section and restrict to the symmetric gravitino background. Writing
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the supercovariant terms explicitly, we then obtain

dtAµ = ψµ + Φσχσµ − Φµη − ΦσΨµσλ, (1.206)

dtψµ = −Dµϕ+ Φσ
(
F−
σµ +Dσµ + (Ψ[σ

ρχµ]ρ)
− + 2λ(∇[σΦµ])

− − gµσ[λ, ϕ]
)
, (1.207)

dtϕ = −Φσψσ, (1.208)

dtλ = η, (1.209)

dtη = ΦσDσλ− [λ, ϕ], (1.210)

dtχµν = (Ψ[µ
σχν]σ)

− − 4(Φ[µDν]λ)
+ + (F+

µν −Dµν) + 2(∇[µΦν])
+λ (1.211)

dtDµν = −(Ψ[µ
σDν]σ)

− + 2(D[µψν])
+ + (Ψ[µ

σF−
ν]σ)

+ − [ϕ, χµν ] + 4(Φ[µ[λ, ψν]])
+

− 1

2

(
Ψ[µ

σ(Ψν]
ρχσρ −Ψσ

ρχν]ρ)
−)+ + λ

(
Ψ[µ

σ(∇ν]Φσ −∇σΦν])
−)+

− 2(Φ[µDν]η)
+ + 2(Φ[µD

σχν]σ)
+ +

1√
2
(Φ[µλSν])

+ − 2
√
2(Φ[µλS

+σ
ν]σ)

+

+ (Φ[µ(Ψν]
σDσλ))

+ − 2
(
Φ[µ(Ψ

σ
ν]Dσλ−Ψσ

σDν]λ)
+
)+
. (1.212)

Here there are a few simpli�cations in dtDµν on account of now having an entirely

symmetric gravitino. First, by writing the self-dual projections explicitly, we have

S+σνσ = gσρ
(

1√
2
(∇νΨσρ −∇σΨνρ)

+ +
1√
2
(−gρ[ν∇λΨσ]λ + gρ[ν∇σ]Ψ

λ
λ)

+

)
=

1

2
√
2
(−∇σΨνσ +∇νΨ

σ
σ) +

1

4
√
2

√
gϵνσαβg

σρgαα
′
gββ

′
(∇α′Ψβ′ρ −∇β′Ψα′ρ)

+
1

4
√
2

√
gϵνσαβg

σρgαα
′
gββ

′
(−gρ[α′∇λΨβ′]λ + gρ[α′∇β′]Ψ

λ
λ)

+
1

2
√
2
gσρ(−gρ[ν∇λΨσ]λ + gρ[ν∇σ]Ψ

λ
λ). (1.213)
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In the above, each expression with the epsilon tensor vanishes under considerations

of symmetric indices. Thus, we continue to

S+σνσ =
1

2
√
2
(−∇σΨνσ +∇νΨ

σ
σ) +

1

2
√
2
gσρ(−gρ[ν∇λΨσ]λ + gρ[ν∇σ]Ψ

λ
λ)

=

(
1

2
√
2
+

1

4
√
2

)
(−∇σΨνσ +∇νΨ

σ
σ)−

1

4
√
2
(−δσσ∇λΨνλ + δσσ∇νΨ

λ
λ)

= − 1

4
√
2
(−∇σΨνσ +∇νΨ

σ
σ) = −1

4
Sν . (1.214)

Noting the analogous index structure, an identical argument leads us to see that

(
Φ[µ(Ψ

σ
ν]Dσλ−Ψσ

σDν]λ)
+
)+

=
1

2

(
Φ[µ(Ψ

σ
ν]Dσλ−Ψσ

σDν]λ)
)+
. (1.215)

Using the above identity to rewrite the last term in (1.212), we can collect all terms

of the form ∼ ΦΨDAλ together to compute

(dtDµν)ΦΨDAλ = (Φ[µ(Ψν]
σDσλ))

+ −
(
Φ[µ(Ψ

σ
ν]Dσλ−Ψσ

σDν]λ)
)+

= −2(Ψσ
[µ(Φν]Dσλ))

+ −Ψσ
σ(Φ[µDν]λ)

+

= −2(Ψσ
[µ(Φν]Dσλ))

+ + 2(Ψσ
[µ(Φν]Dσλ− ΦσDν]λ)

+)+

= −2(Ψσ
[µ(Φν]Dσλ))

+ + 2(Ψσ
[µ(Φν]Dσλ− ΦσDν]λ))

+

− 2(Ψσ
[µ(Φν]Dσλ− ΦσDν]λ)

−)+

= −2(Ψσ
[µ(ΦσDν]λ))

+ − 2(Ψσ
[µ(Φν]Dσλ− ΦσDν]λ)

−)+.

(1.216)

These simpli�cations lead us to the �nal form of

dtDµν = 2(D[µψν])
+ − [ϕ, χµν ]− (Ψσ

[µDν]σ)
− + 2(Φ[µD

σχν]σ)
+ − 2(Φ[µDν]η)

+

+
(
Ψσ

[µ

(
F−
ν]σ + λ(∇ν]Φσ −∇σΦν])

− − (Ψρ
[σχν]]ρ)

−
))+

− 4(Φ[µ[ψν], λ])
+

− 2Φσ(Ψσ[µDν]λ)
+ − 2

(
Ψσ

[µ(Φν]Dσλ− ΦσDν]λ)
−)+ . (1.217)
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1.5.5 Uni�cation with HG(X)

All together, the twist Weyl multiplet coupled to the twisted vector multiplet on the

symmetric gravitino background gives us the transformation laws of

dtgµν = Ψµν , (1.218)

dtΨµν = ∇µΦν +∇νΦµ, (1.219)

dtΦ
µ = 0, (1.220)

dtAµ = ψµ + Φσ(χσµ −Ψσµλ− gσµη), (1.221)

dtψµ = −Dµϕ+ Φσ
(
F−
σµ +Dσµ − gσµ[λ, ϕ] + 2λ(∇[σΦν])

− + (Ψρ
[σχµ]ρ)

−) , (1.222)

dtϕ = −Φσψσ, (1.223)

dtλ = η, (1.224)

dtη = [ϕ, λ] + ΦσDσλ, (1.225)

dtχµν = F+
µν −Dµν + 2λ(∇[µΦν])

+ − 4(Φ[µDν]λ)
+ − (Ψσ

[µχν]σ)
−, (1.226)

dtDµν = 2(D[µψν])
+ − [ϕ, χµν ]− (Ψσ

[µDν]σ)
− + 2(Φ[µD

σχν]σ)
+ − 2(Φ[µDν]η)

+

+
(
Ψσ

[µ

(
F−
ν]σ + λ(∇ν]Φσ −∇σΦν])

− − (Ψρ
[σχν]]ρ)

−
))+

− 4(Φ[µ[ψν], λ])
+

− 2Φσ(Ψσ[µDν]λ)
+ − 2

(
Ψσ

[µ(Φν]Dσλ− ΦσDν]λ)
−)+ . (1.227)

Careful computation reveals that this di�erential squares to

d2t = L(A)
Φ + δϕ+ΦσΦσλ. (1.228)

Therefore, we have a di�erential that appears to be equivariant with respect gauge

transformations and di�eomorphisms in nearly the same fashion as Q, just with a

di�erent gauge transformation parameter. The similarities between (1.218)-(1.227)
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and (1.114)-(1.120) are certainly wanting for an explanation. The answer? Namely,

Q = dt. (1.229)

Accepting this, we do away with dt and always write Q. In our view, the di�erences

are simple matter of �eld rede�ntions of (A,ψ,D), and thus we will hence forth

write these �elds as they appear in twisted supergravity and in (1.218)-(1.227) with

a superscript �t.� Note that this also requires us to write a similar superscript on the

�eld strength FA and all gauge covariant derivatives DA.

We will break our rede�ntions into two parts, �rst rede�ning the gauge �eld A

along with the auxiliary �eld D, and then rede�ning ψ. We take this perspective

in order to stress the point that each of these maneuvers is independent and might

individually provide insight into the presentation preferred by supergravity. An al-

ternatively and perhaps more revealing approach that the di�erence between our two

presentations of the Cartan model of HG(X) is the result of a di�erent splitting of

the action of G on the vector multiplet �elds. Thereby considering each rede�nition

independently, we draw focus on each particular changes in the group action.

Our �rst �eld rede�ntion is given by

At
µ −→ Aµ = Atµ + Φµλ, (1.230)

Dt
µν −→ Dµν = Dt

µν + 2(Φ[µDν]λ)
+. (1.231)

Crucially, the �rst shift has metric dependence in the lowered index of Φµ. As pre-

viously mentioned, this incurs a change in both the �eld strength and the gauge



101

covariant derivative given by

F t
µν = Fµν − 2λ(∇[µΦν]) + 2Φ[µDν]λ, (1.232)

Dt
µO = DµO − Φµ[λ,O], (1.233)

where O is any adjoint valued �eld. In particular, we have Dt
Aλ = DAλ. The resulting

transformations are then given by

Qgµν = Ψµν , (1.234)

QΨµν = ∇µΦν +∇νΦµ, (1.235)

QΦµ = 0, (1.236)

QAµ = ψt
µ + Φρχρµ, (1.237)

Qψµ = −Dµϕ+ Φρ
(
F−
ρµ +Dρµ + (Ψσ

[ρχµ]σ)
−) , (1.238)

Qϕ = −Φρψt
ρ, (1.239)

Qλ = η, (1.240)

Qη = [ϕ, λ] + ΦρDρλ, (1.241)

Qχµν = F+
µν −Dµν − (Ψρ

[µχν]σ)
−, (1.242)

QDµν = (Dµψ
t
ν −Dνψ

t
µ)

+ − [ϕ, χµν ] + 2(Φ[µDρχ
ρ
ν])

+

− (Ψρ
[µDν]σ)

− +
(
Ψρ

[µ(F
−
ν]ρ − (Ψσ

[ρχν]]σ)
−
)+

. (1.243)

Note that the shift (1.230) has already solved the mystery of the extra gauge trans-

formation in d2t of (1.228) above. We now have

Q2 = L(A)
Φ + δϕ = L(At)

Φ + δϕ+ΦσΦσλ. (1.244)
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Another feature of this shift is that it eliminates all of the derivatives on Φ from our

transformation laws. When we turn to the construction of our action, this means

that we can avoid introducing any potential kinetic-like terms for the background Φ

�eld, which would be of assistance in the unexplored case of a dynamical Φ.

Next, we encounter the vector gaugino rede�nition

ψt
µ −→ ψµ = ψt

µ + Φρχρµ, (1.245)

This brings us exactly back to the transformations (1.114)-(1.118) and (1.122)-(1.123),

which we repeat here for the bene�t of the reader.

Qgµν = Ψµν , QAµ = ψµ, (1.246)

QΨµν = ∇µΦν +∇νΦµ, Qψµ = −Dµϕ+ ΦσFσµ (1.247)

QΦσ = 0, Qϕ = −Φσψσ, (1.248)

Qλ = η, (1.249)

Qη = [ϕ, λ] + ΦσDσλ, (1.250)

Qχµν = F+
µν −Dµν − (Ψσ

[µχν]σ)
−, (1.251)

QDµν = 2(D[µψν])
+ − [ϕ, χµν ]− ΦσDσχµν − ((∇µΦ

σ)χσν − (∇νΦ
σ)χσµ)

+

+ (Ψσ
[µF

−
ν]σ)

+ − (Ψσ
[µDν]σ)

− +
1

2
ΨρσΨρ[µχν]σ

Hence, we come to the grand conclusion that twisted and truncated N = 2 Eulcidean

supergravity on a symmetric gravitino background is a presentation of the base of

Cartan model of equivariant cohomology on A×Met(X) with respect to G×Diff+(X)

and two anti-ghost modules! This is one of the major results of this work and perfectly

exempli�es the spirit of physical mathematics.
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Now, with that out of the way, let's get back to the action!

2 The Action

2.1 Overview

The action of Donaldson-Witten theory SUV for an arbitrary Lie group G in (0.92)

is a scalar functional of the twisted vector multiplet �eld content which is Q-closed

and a scalar under the Euclidean group. We can write it as a Q-exact piece plus a

topological term, namely

SUV = QVUV +
iτ0
8π

∫
X
TrFA ∧ FA. (2.1)

Likewise, the IR action with an arbitrary prepotential F and an G = U(1) group can

be written

SIR = Q(VIR + V IR) + CIR. (2.2)

Our goal in this section will be to construct a new action S which is not Q-closed,

but Q-closed. Further, when we turn o� the background supergravity �elds Ψ and

Φ, we want this action to reduce to either SUV in the case of a quadratic potential or

SIR in the case of G = U(1). This can be summarized by the three conditions40

QS = 0, (2.3)

S
∣∣
F= 1

2
τ0Tr[ϕ2],F= 1

2
τ0Tr[λ2],Ψ,Φ=0

= SUV, (2.4)

S
∣∣
G=U(1),Ψ,Φ=0

= SIR. (2.5)

40We note that (2.4) and (2.5) are technically mutually incompatible due to an overall scale factor
in the normalization between SUV and SIR. Nevertheless, the structure of the terms do allow our
conditions to be meaningful. For posterity, we choose to align with SIR.
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These requirements are tantamount to identifying a coupling of the super Yang Mills

theory to our twisted supergravity background Weyl multiplet. We will �rst present

an action S which minimally satis�es these conditions by generalizing the primitives

VUV, VIR, and V IR. Then, in our �nal excursus, we will do a lightening fast and

astoundingly cursory review of superconformal tensor calculus and present a second

action St which satis�es (2.3)-(2.5). We will conclude this section by showing that

S = St+Q(A+A), that is, the two actions only di�er by cohomologically uninteresting

Q-exact terms.

2.2 Minimal Action

We de�ne

S = Q(V+ V) + C, (2.6)

where

V =
i

24π

∫
X
d4x

√
g

[
−1

2
FIJ(F

+,I
µν +DI

µν)χ
µν,J − 2FIJψ

I
σD

σλJ

+ FIJKψ
I
µψ

J
νχ

µν,K − 2FI [λ, η]
I

]
,

(2.7)

V =
i

24π

∫
X
d4x

√
g

[
1

2
F IJ(F

+,I
µν +DI

µν)χ
µν,J − 2F IDσψ

σ,I

+
i

12
F IJKχµ

ρ,Iχµσ,JχKρσ − 2F I [ϕ, η]
I

]
,

(2.8)
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and

C =
i

24π

∫
X
d4x

[
1

4
FIJϵ

µνρσF I
µνF

J
ρσ −

1

2
FIJKϵ

µνρσψIµψ
J
νF

K
ρσ +

1

12
FIJKLϵ

µνρσψIµψ
J
νψ

K
ρ ψ

L
σ

]
.

(2.9)

Here, we use the indices I, J,K, L to denote the gauge indices. Multiple indices on a

prepotential indicate derivatives by the respective scalar. In the case of non-abelian

gauge groups they serve as indices for the generators of the adjoint representation

and, in the IR they label di�erent abelian vector multiplets. Thus, for example, for

a single abelian vector multiplet, where the indices can be dropped, we would write

FIJ = F11 =
∂2F
∂ϕ2

= τ F IJ = F11 =
∂2F
∂λ2

= τ (2.10)

Let us check that S satis�es the �rst of our conditions of QS = 0. Since Q2 = L(A)
Φ +δϕ

and both V and V are scalars in the trivial representation of G, it is clear that

Q(V+ V) = 0. For the non-exact piece, we have

QC = QC+ KC

=
i

24π

∫
X
d4x

[
∇µ

(
FIJϵ

µναβψIνF
J
αβ −

1

3
FIJKϵ

µναβψIνψ
J
αψ

K
β

)]
+

i

24π

∫
X
d4xΦσϵµναβ

[
−1

4
FIJK(ψ

I
σF

J
µνF

K
αβ − 4ψIµF

J
σνF

K
αβ)

+
1

6
FIJKL(3ψ

I
σψ

J
µψ

K
ν F

L
αβ − 2ψIµψ

J
νψ

K
α F

L
σβ)

− 1

12
FIJKLMψ

I
σψ

J
µψ

K
ν ψ

L
αψ

M
β

]
=

i

24π

∫
Tr

[
ιΦ

(
−FIJKψ

I ∧ F J ∧ FK +
1

3
FIJKLψ

I ∧ ψJ ∧ ψK ∧ FL

− 1

60
FIJKLMψ

I ∧ ψJ ∧ ψK ∧ ψL ∧ ψM
)]

.
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Since we are working on a four manifold, there is no support for the �ve forms in

the �nal line above, and we conclude that QC = 0. Hence, we see that S is indeed

Q-closed as desired.

Turning to our two other conditions, we need to look at the explicit form of S.

Computing the action of Q in (2.6), we have

S = S0 −
1

2

∫
X
d4x

√
gΨµν(Λµν + Λµν)

+

∫
X
d4x

√
gΦσ(Zσ + Zσ) +

∫
X
d4x

√
gΨµσΨν

σ(Υµν +Υµν).

(2.11)

Here,

S0 = Q(V+ V) + C

=
i

24π

∫
X
d4x

√
g

[
1

2
F IJF

+
µν
IF µν,J

+ − 1

2
FIJF

−
µν
IF µν,J

− + 4iImFIJDσϕ
IDσλJ

+iImFIJDµν
IDµν,J + 2FIJψσ

IDσηJ − 2F IJη
IDσψ

σ,J

−2FIJψµ
I(Dνχ

µν)J + 2F IJ(D[µψν]
I)+χµν,J

+
1

2
F IJKη

I(F+,J
µν +Dµν

J)χµν,K+

+FIJKψµ
Iψν

J(F µν,K
− −Dµν,K)

+
1

12

√
g−1FIJKLϵ

µνρσψµ
Iψν

Jψρ
Kψσ

L

+
i

12
F IJKLη

Iχµ
ρ,Jχµσ,Kχρσ

L

− i

2
F IJK(F

+
µρ
I −Dµρ

I)χµσ,Jχσ
ρ,K

+ iImFIJ [ϕ, χµν ]
Iχµν,J + 2FIJψσ

I [ψσ, λ]J − 2F I [ψσ, ψ
σ]I

− 2FI [η, η]
I − 2F IJη

I [ϕ, η]J − 2FI [λ, [ϕ, λ]]
I − 2F I [ϕ, [ϕ, λ]

I

]
,

(2.12)
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Λµν =
i

24π

[
−FIJF

−,I
µσ χν

σ,J −FIJF
−,I
νσ χµ

σ,J + FIJK(ψ
I
µψ

J
σ )

−χν
σ,K

+FIJK(ψ
I
νψ

J
σ )

−χµ
σ,K + 2gµνFIJψσ

IDσλJ

−2FIJψµ
IDνλ

J − 2FIJψν
IDµλ

J + 2gµνFI [λ, η]
I
]
,

(2.13)

Λµν =
i

24π

[
F IJF

−I
µσ χν

σ,J + F IJF
−,I
νσ χµ

σ,J − 2F IDµψν
I − 2F IDνψµ

I

+2gµνF IDσψ
σ,I + gµνF I [ϕ, η]

I +
i

12
F IJK d̃�Ψ(χµ

ρ,Iχµσ,Jχρσ
K)

]
,

(2.14)

Zσ =
i

24π

[
1

2
FIJKψσ

I(F+
µν
J +Dµν

J)χµν,K + 2FIJKFσµ
Iψν

Jχµν,K

+ 2FIJKψσ
Iψρ

JDρλK +
1

2
FIJDσχµν

Iχµν,J −FIJDµ(χσν
Iχµσ,J)

−FIJKDµϕ
Iχσν

Jχµν,K − 2FIJFσρ
IDρλJ + 2FIJψσ

I [λ, η]J

−FIJKLψσ
Iψµ

Jψν
Kχµν,L − 2FI [λ,Dσλ]

I

]
,

(2.15)

Zσ =
i

24π

[
−1

2
F IJDσχµν

Iχµν,J + F IJDµ(χ
I
σνχ

µν,J) +
i

12
F IJKDµλ

Iχσν
Jχµν,K

+ 2F IJFσρ
IDρλJ + 2F I [ψσ, η]

I − 2F I [ϕ,Dσλ]
I

]
,

(2.16)

Υµν = − i

26π
F IJχµρ

Iχν
ρ,J , (2.17)

Υµν =
i

26π
FIJχµρ

Iχν
ρ,J . (2.18)

Here, to avoid needless variations of self-dual �elds, we have written the last term of

(2.14) as d̃�Ψ(· · · ), which denotes the variation, with the gravitino extracted to the

left. Now, comparing S0 to SUV and SIR, it is clear that we have the desired alignment
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of (2.4) and (2.5). This can even be seen at the level of the primitives, as

(V+ V)
∣∣
F= 1

2
τ0Tr[ϕ2],F= 1

2
τ0Tr[λ2],Ψ,Φ=0

= VUV, (2.19)

(V+ V)
∣∣
G=U(1),Ψ,Φ=0

= V IR + VIR. (2.20)

Therefore we declare success! We also mention that S is as minimal a coupling to

supergravity as possible given our desiderata, as it has the exact same non-exact term

and we are essentially conducting a �twisted supergravity completion� of Q(V + V)

with Q(V+ V).

Finally, before we turn to the second generalized action, we de�ne the UV and IR

limits of S with

SUV = S
∣∣
F= 1

2
τ0Tr[ϕ2],F= 1

2
τ0Tr[λ2],Ψ,Φ=0

, (2.21)

SIR = S
∣∣
G=U(1),Ψ,Φ=0

. (2.22)

2.3 Excursus: Superconformal Tensor Calculus Action

In Section 0.2.3 we saw that the constraint of N = 2 supersymmetry led to a single

general formula for the action of a single vector multiplet. With even more symmetry

on the table, there is a similar formula for the action of N = 2 supergravity known as

the chiral density formula. Unfortunately, it is not generally written in terms of the

vector multiplet representation, but rather the superconformal chiral and anti-chiral

multiplet. Thankfully, through the method of superconformal tensor calculus, one

can constrain these multiplets to arrive directly at the �elds of the vector multiplet,

giving one a general action principle for a N = 2 supergravity vector multiplet.

After a twist and a push onto our symmetric gravitino background, we then arrive
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at a second generalized action which satis�es (2.3)-(2.5). In this �nal excursus, we

will take a brief foray into the chiral and antichiral multiplets and then present the

resulting action St. We will then, after conducting the previously mentioned �eld

rede�nition of Section 1.5.5, show that this action di�ers from S by a Q-exact term.

2.3.1 The Construction

The superconformal (anti) chiral multiplet of conformal supergravity is de�ned as the

representation of the conformal superalgebra whose bottom component is a scalar

�eld that transforms into a (anti) chiral spinor under a supersymmetric variation. The

remaining �elds of the multiplet are simply a result of the supersymmetric completion

of the multiplet. Prior to the twist, the N = 2 chiral multiplet is built from a real

scalar A+, a left-handed spinor Gi+, a symmetric su(2)+ �eld B(ij), a self-dual two

form �eld F+
ab, a left-handed spinor Λi+, and a real scalar C+. The N = 2 anti-

chiral multiplet mirrors these �elds, with each + replaced by a − and the word �left�

re�ected over to �right.� Both multiplets have eight bosonic and fermionic degrees of

freedom.

After the twist, we can identify the su(2)R indices with the su(2)+ and we �nd

that, as in the case of the vector multiplet �elds, all spinors either split into a fermionic

zero for and a fermionic self-dual two form or become a fermionic 1-form. We can

collect the two multiplets as

(A+,G,Gµν ,B+µν ,F
+
µν ,Λ,Λµν ,C+), (2.23)

and

(A−,Gµ,B−µν ,F
−
µν ,Λµ,C−). (2.24)
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Here, all �elds labeled by A,B,C, or F are bosonic, and the rest fermionic. In addition,

F−
µν is anti-self-dual, while Gµν ,F

+
µν ,B+µν , and, unfortunately for notation, B−µν are

all self-dual.

These �elds each have explicit and rather complicated transformation laws which

do not mix amounst each other, but do involve the �elds of the twisted Weyl mul-

tiplet. We will, as now should be expected, refer the reader to [12], for the full

transformations, but do crucially note, for reasons that soon become clear, that C−

transformations into a total derivative plus a term of the form −1
2
Ψσ

σC− and that

the transformation of Λ contains i√
2
C+.

The action for the chiral or anti-chiral multiplet has a �xed form, dictated by

the chiral density formula. After the twist and truncation, but before moving to a

symmetric gravitino background, it leds us to the action

SCDF =

∫
X
d4x

√
g [L+ + L−] , (2.25)

with

L+ = C+ − i√
2
Ψρ

ρΛ+ 4
√
2T−

µνΨ
µ
ρG

ρν − 4A+T
−
µνT

µν−

− iΨµ
ρΨνρ(F

µν+ +Bµν
+ )− 4A+T

µν−Ψµ
ρΨνρ

−
√
2
√
g−1ϵµνρσΨµ

λΨνλΨρ
δGδσ +

1

2

√
g−1ϵµνρσΨµ

λΨνλΨρ
δΨσδA+, (2.26)

L− = C−. (2.27)

We note that the two terms in the chiral density formula (2.25) are actually inde-

pendent and we have chosen their relative coe�cient by hand. Importantly, the anti

chiral multiplet density is simply C− due to our truncation, and given our earlier

comment about its transformation, it is clear that it vanishes under integration, as
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Q(
√
gC−) is a total derivative. In addition, we see that Q(−i

√
2
√
gΛ) contains the

�rst two terms of
√
gL+. Together, these two observations suggest that a minimal

Q-closed action that necessarily contains all gravity degree zero terms would take the

form

St =
∫
X
d4x [

√
gC− +Q(

√
gΛ)] , (2.28)

where we have put our hand back in to change the coe�cient of the second term.

Lamentably, this action is still written in terms of the twisted chiral and twisted anti

chiral multiplet �elds. In order to convert this to an action of the twisted vector

multiplet and twisted Weyl multiplet �elds, we must partake in a hearty helping of

superconformal tensor calculus. Weighty jargon aside, for the case in front of us,

this means identifying A+ of the twisted chiral multiplet with our prepotential F

and likewise A− of the twisted anti chiral multiplet with our prepotential F . Then,

maintaining QA+ = QF and QA− = QFmandates a further identi�cation of the G

�elds with vector multiplet �elds, and so forth and so on into the cascade of con-

sistency conditions, until we end up with an expression for each �eld of (2.23) and

(2.24) in terms of exclusively twisted vector multiplet and twist Weyl multiplet �elds.

This process is done with the �t� �elds of the original transformation laws of twisted

supergravity, related the those of the Cartan model through (1.230)-(1.231)+(1.245).

We will therefore make use of the �t� superscript on our �elds.

All told, after a light rescaling, we arrive at the following expressions

Λt =
i

24π

[
1

2
F IJ(F̂

t+,I

µν +DtI
µν)χ

µν,J − 2F ID
t
σψ

tσ,I

+
i

12
F IJKχµ

ρ,Iχµσ,JχKρσ − 2F I [ϕ, η]
I

]
, (2.29)
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Ct− =
i

24π

[
−1

2
FIJ(F̂

t−I
µν + λIT−

µν)(F̂
tµν−,J

+ λJT µν−) +
1

2
FIJD

I
µνD

µνJ

− 2FIJψ
tI
µ (D

t
νχ

µν)J + 2FIJψ
tI
σ (D

tση)J + 2FID
t
µD

tµλI

+ FIJKψ
tI
µ ψ

tJ
ν (F̂

tµν−,J
+ λJT µν− −DtµνI)

+
1

12

√
g−1FIJKLϵ

µνρσψtI
µ ψ

tJ
ν ψ

tI
ρ ψ

tJ
σ +

1

2
FIJ [ϕ, χµν ]

IχµνJ

+ 2FIJψ
tI
µ [ψ

tµ, λ]J − 2F [η, η]I − 2FI [λ, [ϕ, λ]]
I

]
, (2.30)

where, on the symmetric gravitino background, we have

Dt
µψ

t
ν = Dt

µψν −
1

2
Ψµ

σ(F̂
t−
σν + λT−

σν +Dt
σν) +

1

2
Ψµν [λ, ϕ], (2.31)

Dt
µϕ = Dt

µϕ+
1

2
Ψµ

σψt
σ, (2.32)

Dt
µλ = Dt

µλ, (2.33)

Dµη = Dµη −
1

2
Ψµ

σDσλ−
√
2λSσ [νσ], (2.34)

Dt
µχνσ = Dt

µχνσ + 2(Ψµ[νD
t
σ]λ)

+ −
√
2λS+µ,[νσ], (2.35)

F̂
t

µν = F t
µν +Ψ[µ

σχν]σ +
1

2
Ψµ

σΨνσλ, (2.36)

and in particular

F̂
t−
σν + λT−

σν = F t−
µν + (Ψ[µ

σχν]σ)
− + 2λ(∇[µϕν])

−, (2.37)

Dt
µD

tµλ = Dt
µD

tµλ+
1

2
Ψσ

σ[η, λ]. (2.38)

Here, since the �t� �elds are the same as our Cartan model �elds at gravity degree

zero, we recognize that St as in (2.28), with (2.29) and (2.30), contains the same

degree zero part as S. Therefore, we see that St does indeed satisfy the requirements

of (2.3)-(2.5).
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2.3.2 The Comparison

In this section we will show that St is equal to S up to a Q-exact term, which de-

couples from the theory. Therefore, these two actions formally represent the same

cohomological �eld theory. Explicitly, we will �nd

St = S+Q(A+ A). (2.39)

The goal of this section is to identify A and A explicitly. Diving right in, we can write

St =
∫
X
d4x

[√
gCt− +Q(

√
gΛt)

]
= Q(V+ V) + C+Q

(∫
X
d4x

√
gΛt − V

)
+

(∫
X
d4x

√
gCt− −QV− C

)
= S+Q

(∫
X
d4x

√
gΛt − V

)
+

(∫
X
d4x

√
gCt− −QV− C

)
. (2.40)

Thus, rather technically, we have solved the problem for the chiral, or barred side of

the action, but we can do better. Comparing this with V in (2.8), we see that we

have term by term agreement. The di�erence is the entirely in the choice of t �elds

and the supercovariance. We therefore write

V̂t =

∫
X
d4x

√
gΛt, (2.41)

where the hat over Vt indicates that we supercovariantize it as much as possible.

Hence, we can rewrite the chiral di�erence as

Q
(∫

X
d4x

√
gΛt − V

)
= Q(V̂t − V). (2.42)
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We next turn to the anti-chiral, or unbarred half of the action. To avoid a sea of

indices in the rather tedious computation ahead, we will restrict ourselves to the IR

constraints of a single U(1) vector multiplet with an arbitrary prepotential. We assure

the reader that the general case follows suit [12].

To begin, expand the supercovariant terms in CtIR−, giving

CIR− =
i

24π

[
−1

2
τF t,−

µν F
t,µν
− +

1

2
τDt

µνD
t,µν + 2τ∇µa∇µa− 2τψt

µ∇νχ
µν + 2τψt

µ∇µη

+
∂τ

∂a
(F t,µν

− −Dt,µν)ψt
µψ

t
ν +

1

12

√
g−1∂

2τ

∂a2
ϵµναβψt

µψ
t
νψ

t
αψ

t
β

−τF t,µν
− (Ψσ

[µχν]σ)
− +

∂τ

∂a
(Ψσ

[µχν]σ)
−ψt,µψt,ν + 2τΨµν(∇µa)ψ

t
ν

−τΨσ
σ(∇µa)ψ

t,µ − 2τa(∇[µΦν])−F t,−
µν − 1

2
τ(Ψσ

[µχν]σ)
−(Ψρ[µχν]ρ)

−

+ 2
∂τ

∂a
a(∇[µΦν])−ψt

µψ
t
ν − 2τa(∇[µΦν])−(Ψσ

[µχν]σ)
− − 2τa2[(∇[µΦν])

−]2
]

(2.43)

Next, we conduct the �eld rede�ntion to arrive at our Cartan model �elds, and then

collecting terms in increasing gravity degree, we �nd

CtIR−

∣∣∣
deg 0

=
i

24π

[
−1

2
τF−

µνF
µν
− +

1

2
τDµνD

µν + 2τ∇σa∇σa− 2τψµ∇νχ
µν + 2τψσ∇ση

+
∂τ

∂a
(F µν

− −Dµν)ψµψν +
1

12

√
g−1∂

2τ

∂a2
ϵµναβψµψνψαψβ

]
(2.44)

CtIR−

∣∣∣
deg 1

=
i

24π

[
−τΨσ

[µF
µν
− χν]σ + 2τΨµν(∇µa)ψν − τΨσ

σ(∇µa)ψ
µ

+
∂τ

∂a
Ψσ

[µχν]σ(ψ
µψν)−

]
(2.45)

CtIR−

∣∣∣
deg 2

=
i

24π

[
−2τ(Φ[µ∇ν]a)(F

µν
− +Dµν) + 2τΦσχσµ∇νχ

µν − 2τΦσχσµ∇µη

+2
∂τ

∂a
Φ[µ(∇ν]a)ψ

µψν − 2
∂τ

∂a
Φσ(F µν

− −Dµν)χσµψν
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−1

3

∂2τ

∂a2
ϵµναβΦσχσµψνψαψβ −

1

2
τ(Ψσ

[µχν]σ)
−(Ψρ[µχν]ρ)

−
]

(2.46)

CtIR−

∣∣∣
deg 3

=
i

24π

[
−2τ(Φ[µ∇ν]a)

−(Ψσ[µχν]σ)
− − 2τΨµνΦσ(∇µa)χσν

+τΨσ
σΦ

ρ(∇νa)χρ
µ − 2

∂τ

∂a
Φρ(Ψσ

[µχν]σ)
−χρ

µψν
]

(2.47)

CtIR−

∣∣∣
deg 4

=
i

24π

[
∂τ

∂a
(F µν

− −Dµν)ΦσΦρχσµχρν − 2
∂τ

∂a
ΦσψσΦ[µ(∇ν]a)χ

µν

+
1

2

√
g−1∂

2τ

∂a2
ϵµναβΦσΦρχσµχρνψαψβ

]
(2.48)

CtIR−

∣∣∣
deg 5

=
i

24π

[
∂τ

∂a
(Ψσ

[µχν]σ)
−ΦρΦγχρ

µχγ
ν

]
(2.49)

CtIR−

∣∣∣
deg 6

=
i

24π

[
−1

3

√
g−1∂

2τ

∂a2
ϵµναβΦσΦρΦγχσµχρνχγαψβ

]
(2.50)

CtIR−

∣∣∣
deg 8

=
i

24π

[
1

12

√
g−1∂

2τ

∂a2
ϵµναβΦσΦρΦγΦδχσµχρνχγαχδβ

]
(2.51)

Multiplying the degree eight term above by our volume form
√
gd4x, we see that

1

12

∂2τ

∂a2
ϵµναβΦσΦρΦγΦδχσµχρνχγαχδβ d

4x =
1

12
ιΦ (χ ∧ ιΦ(χ) ∧ ∧ιΦ(χ) ∧ ιΦ(χ)) = 0,

(2.52)

as there is no support on X for a �ve form. Comparing gravity degree zero above

in (2.44) to the unbarred part of SIR,0 in (2.12), we �nd exact agreement. Likewise,

we have exact agreement in gravity degree one, as seen comparing (2.45) and (2.13).

All together, the remaining di�erence of our action densities on the anti-chiral side is

given by

√
gCtIR− −QV− C =

√
g
i

24π

[
2τΦσ(F+

σρ −Dσρ)∇ρa− 2τΦσχσµ∇µη

−1

6

√
g−1∂

2τ

∂a2
Φσϵµναβ(2χσµψνψαψβ + 3χµνψσψαψβ)
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+
1

2

∂τ

∂a
Φσ(−Dµνψσχ

µν + 4Dµνψ
µχσ

ν)

+
1

2

∂τ

∂a
Φσ(−F+

µνψσχ
µν − 4F−

µνψ
µχσ

ν − 4Fσµψνχ
µν)

+2τΦσχσµ∇νχ
µν − 1

2
τΦσ(∇σχµν)χ

µν

+τΦσ∇µ(χσνχ
µν) +

∂τ

∂a
(∇µa)Φ

σχσνχ
µν

]
+
√
g
i

24π

[
−2τ(Φ[µ∇ν]a)(Ψ

σ[µχν]σ)
− − 2τΦµ(∇νa)Ψ

νσχµσ

+τΦ[µ(∇ν]a)Ψ
σ
σχ

µν − 2
∂τ

∂a
Φρ(Ψσ

[µχν]σ)
−χρ

µψν
]

+
√
g
i

24π

[
∂τ

∂a
ΦσΦρ(F µν

− −Dµν)χσµχρν − 2
∂τ

∂a
ΦσΦρψσ(∇µa)χρµ

+
1

2

√
g−1∂

2τ

∂a2
ΦρΦσϵµναβχρµχσνψαψβ

]
+
√
g
i

24π

[
∂τ

∂a
(Ψσ

[µχν]σ)
−ΦρΦγχρ

µχγ
ν

]
+

i

24π

[
−1

3

∂2τ

∂a2
ΦρΦσΦγϵµναβχρµχσνχγαψβ

]
, (2.53)

where, as usual, we have split the terms in the increasing gravity degree.

Let's begin by settling degree two, note that

−1

6
d4x

∂2τ

∂a2
Φσϵµναβ(2χσµψνψαψβ + 3χµνψσψαψβ) = −1

6
ιΦ(χ ∧ ψ ∧ ψ ∧ ψ) = 0

(2.54)

Further, we have

τΦσ∇µ(χσνχ
µν) = τΦσ(∇µχσν)χ

µν − τΦσχσµ∇νχ
µν (2.55)

as well as

−1

2
τ
√
gΦσ(∇σχµν)χ

µν = −1

4
τϵµναβΦσ(∇σχµν)χαβ
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= −1

2
τϵµναβΦσ(∇µχσν)χαβ −

1

2
τϵµναβΦσ(∇µχνα)χσβ

= −√
gτΦσ(∇µχσν)χ

µν −√
gτΦσχσµ(∇νχ

µν). (2.56)

Turning to the ΦFAψχ terms, note that

−2
√
g
∂τ

∂a
ΦσFσµψνχ

µν = −∂τ
∂a
ϵµναβΦσFσµψνχαβ

=
1

2

∂τ

∂a
ϵµναβΦσFµνψσχαβ −

∂τ

∂a
ϵµναβΦσFµνψαχσβ

=
√
g
∂τ

∂a
ΦσF+

µνψσχ
µν − ∂τ

∂a
ϵµναβΦσFµνψαχσβ, (2.57)

and

−2
√
g
∂τ

∂a
ΦσF−

µνψ
µχσ

ν = −√
g
∂τ

∂a
ΦσFµνψ

µχσ
ν +

1

2

∂τ

∂a
ϵµναβΦσFµνψαχσβ. (2.58)

This gives

1

2

√
g
∂τ

∂a
Φσ(−F+

µνψσχ
µν − 4F−

µνψ
µχσ

ν − 4Fσµψνχ
µν) =

1

2

√
g
∂τ

∂a
Φσ

[
F+
µνψσχ

µν − 4F+
µνψ

νχσ
ν
]
.

(2.59)

Thus, we can clean up the remaining terms into

√
gCtIR− −QV− C =

√
g
i

24π

[
2τΦσ(F+

σρ −Dσρ)∇ρa− 2τΦσχσµ∇µη

+
1

2

∂τ

∂a
Φσ(−Dµνψσχ

µν + 4Dµνψ
µχσ

ν)

+
1

2

∂τ

∂a
Φσ(F+

µνψσχ
µν − 4F+

µνψ
νχσ

ν)

+
∂τ

∂a
(∇µa)Φ

σχσνχ
µν

]
+
√
g
i

24π

[
−2τ(Φ[µ∇ν]a)(Ψ

σ[µχν]σ)
− − 2τΦµ(∇νa)Ψ

νσχµσ
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+τΦ[µ(∇ν]a)Ψ
σ
σχ

µν − 2
∂τ

∂a
Φρ(Ψσ

[µχν]σ)
−χρ

µψν
]

+
√
g
i

24π

[
∂τ

∂a
ΦσΦρ(F µν

− −Dµν)χσµχρν − 2
∂τ

∂a
ΦσΦρψσ(∇µa)χρµ

+
1

2

√
g−1∂

2τ

∂a2
ΦρΦσϵµναβχρµχσνψαψβ

]
+
√
g
i

24π

[
∂τ

∂a
(Ψσ

[µχν]σ)
−ΦρΦγχρ

µχγ
ν

]
+

i

24π

[
−1

3

∂2τ

∂a2
ΦρΦσΦγϵµναβχρµχσνχγαψβ

]
(2.60)

We will now show that the above is an entirely Q-exact expression. Starting with the

highest degree, we have

Q
(
1

6

∂τ

∂a
ΦρΦσϵµναβχµνχραχσβ

)
= −1

6

∂2τ

∂a2
ΦσψσΦ

ρΦγϵµναβχµνχραχγβ

− 1

6

∂τ

∂a
ΦρΦσϵµναβ(Dµν − F+

µν + (Ψγ
[µχν]γ)

−)χραχσβ

− 1

3

∂τ

∂a
ΦρΦσϵµναβχµν(Dρα − F+

ρα + (Ψγ
[ρχα]γ)

−)χσβ

= −1

3

∂2τ

∂a2
ΦρΦσΦγϵµναβχρµχσνχγαψβ

+
√
g
∂τ

∂a
ΦρΦσ(Ψγ

[µχν]γ)
−χρ

µχσ
ν

+
√
g
∂τ

∂a
ΦσΦρ(F µν

+ −Dµν)χσµχρν . (2.61)

Above, we have used the fact that

1

3
Φσ(ϵµναβχσµΦ

ρχρνΦ
γχγαψβ) =

1

6
Φσψσϵ

µναβχµνΦ
ρχραΦ

γχγβ, (2.62)

which follows from another �unsupported �ve-form" argument, that is, we have

0 = ιΦ(χ ∧ ιΦ(χ) ∧ ιΦ(χ) ∧ ψ)
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∼
∫
X
d4x

[
1

3
Φσ(ϵµναβχσµΦ

ρχρνΦ
γχγαψβ) +

1

6
Φσ(ϵµναβχµνΦ

ρχραΦ
γχγβψσ)

]
. (2.63)

Moving down to the next highest remaining degree, consider

Q
(
1

2

∂τ

∂a
Φσϵµναβχσµχαβψν

)
= −1

2

∂2τ

∂a2
ΦρψρΦ

σϵµναβχσµχαβψν

+
1

2

∂τ

∂a
Φσϵµναβ(F+

σµ −Dσµ)χαβψν

− 1

2

∂τ

∂a
Φσϵµναβχσµ(F

+
αβ −Dαβ)ψν

+
1

2

∂τ

∂a
Φσϵµναβ(Ψρ

[σχµ]ρ)
−χαβψν

− 1

2

∂τ

∂a
Φσϵµναβχσµ(Ψ

ρ
[αχβ]ρ)

−ψν

− 1

2

∂τ

∂a
Φσϵµναβχσµχαβ∇νa

+
1

2

∂τ

∂a
ΦσϵµναβχσµχαβΦ

ρFρν . (2.64)

Note that

1

2
Φσϵµναβ(F+

σµχαβψν − χσµF
+
αβψν) = −Φσϵµναβ(χσµF

+
αβψν −

1

4
F+
µνχαβψσ)

= −2
√
gΦσF+

µνψ
µχσ

ν +
1

2

√
gΦσF+

µνψσχ
µν . (2.65)

Likewise, analogous arguments show that

−1

2
Φσϵµναβ(Dσµχαβψν + χσµDαβψν) = 2

√
gΦσDµνψ

µχσ
ν − 1

2

√
gΦσDµνψσχ

µν ,

(2.66)
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and

−1

2
Φσϵµναβ((Ψρ

[σχµ]ρ)
−χαβψν + χσµ(Ψ

ρ
[αχβ]ρ)

−ψν) = −2
√
gΦρ(Ψσ

[µχν]σ)
−χρ

µψν .

(2.67)

Here, in the �nal case, the potential second term on the right hand side vanishes due

to the contraction of the anti-self-dual form (Ψχ)− with the self-dual χ. With these,

together with another bout of index shifting, we compute

Q
(
1

2

∂τ

∂a
Φσϵµναβχσµχαβψν

)
=

√
g
∂τ

∂a
(∇µa)Φ

σχσνχ
µν

+
1

2

∂τ

∂a
Φσ(−Dµνψσχ

µν + 4Dµνψ
µχσ

ν)

+
1

2

∂τ

∂a
Φσ(F+

µνψσχ
µν − 4F+

µνψ
νχσ

ν)

− 2
√
g
∂τ

∂a
Φρ(Ψσ

[µχν]σ)
−χρ

µψν

− 1

2

∂τ

∂a
ΦσΦρϵµναβFµνχσαχρβ

+
1

2

∂2τ

∂a2
ΦρΦσϵµναβχρµχσνψαψβ (2.68)

Here, the term in the penultimate line is precisely that required to combine with the

�nal term in (2.61) to give the desired F−
A dependence found in the degree four term

of our di�erence (2.60).

Finally, consider

Q
(
τΦµϵ

µναβχαβ∇νa
)
= −∂τ

∂a
ΦσΦµϵ

µναβψσχαβ∇νa+ τΦσΨσµϵ
µναβχαβ∇νa

+ τΦµϵ
µναβ(F+

αβ −Dαβ − (Ψσ
[αχβ]σ)

−)∇νa− τΦµϵ
µναβχαβ∇νη.

= 2
√
gτΦσ(F+

σρ −Dσρ)∇ρa− 2
√
gτΦσχσµ∇µη

− 2
√
gτΦµ∇νa(Ψ

µσχνσ) + 2
√
gτΦµ∇νa(Ψ

σ[µχν]σ)
−
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− 2
√
g
∂τ

∂a
ΦσΦρψσ(∇µa)χρµ (2.69)

which, after careful inspection, accounts for all the remaining terms in (2.60).

Therefore, all together, de�ne A and A as

A =
i

24π

∫
X
d4x

√
g

[
2τΦρχρµ∇µa+

∂τ

∂a
Φρχρµχ

µνψν +
1

3

∂τ

∂a
ΦρΦσχρµχσνχ

µν

]
, (2.70)

A = V̂t − V. (2.71)

There is no a prior reason to favor S over St, but given the simplicity of the trans-

formations of the Cartan model �elds and the fact the S terminates at gravity degree

two, we will move forward with S. Nevertheless, in Appendix , we use our knowledge

of the form of S to write the anti-chiral part of St as a maximal exact and non-exact

splitting.

With the action behind us, the hero of our hero enters the scene...

3 The Invariants

3.1 Overview

Our ultimate goal is to build equivariant classes forHDiff+(X)(Met(X)) which generalize

the Donaldson-Witten partition function,

ZDW[g] =

∫
[dVM]e−SUV . (3.1)

Indeed, we wish to view ZDW[g] as an element of H0
Diff+(X)(Met(X)). Our new invari-

ants will then be higher degree elements of this equivariant cohomology, which can

be formally understood as di�erential forms on Met(X) which are invariant under the
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action of Diff+(X).

Therefore, and perhaps unsurprising, we take our new invariant Z[g,Ψ,Φ] to be

(3.1) with the action SUV replaced by SUV, the Q-closed action under the conditions of

(2.21). We will see how, in much the same sense that the original Donaldson-Witten

invariants were a generating function for the polynomial invariants, a simple chain

map argument reveals that Z[g,Ψ,Φ] generates an in�nite tower of higher degree

elements of HDiff+(X)(Met(X)).

In this section we will present the salient features of Z[g,Ψ,Φ], and then, after

getting our hands dirty with some interrelations between the di�erent gravity degree

parts of our action, we will conduct an preliminary exploration of both Z[0] and Z[1].

3.2 The Partition Function

Consider the UV limit of the action constructed in Section 2.2. Recall that

QSUV = 0. (3.2)

Thus, when we exponentiate the action, we have Q-closure as

Q
(
e−SUV

)
= (−QSUV)e−SUV = 0. (3.3)

In order to obtain our desired di�eomorphism invariants, we need to integrate out

the vector multiplet �elds. Thus, we have our Family Donaldson-Witten partition

function as

Z[g,Ψ,Φ] =

∫
[dVM] e−SUV (3.4)
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Note that we have here the full SUV, not SUV.

The role of integrating over the vector multiplet requires some understanding.

Our total complex is given by

Ẽg = S•(LieG)⊗ Ω•(M)⊗ Ω2,+
g (X, adP )⊗ ΠΩ2,+

g (X, adP )

⊗ Ω0(X, adP )⊗ ΠΩ0(X, adP ) (3.5)

Recall that the �rst two tensorands are the base of our Cartan model and are gen-

erated by (g, A, ψ,Ψ, ϕ,Φ). The next pair are the localization multiplet module

(H/D,χ), and the �nal pair are the projection multiplet module (λ, η). We also

mention that, due to the dependence of self-duality on a metric (or more accurately,

on the conformal class of a metric), the entire complex depends on a �xed choice of

metric. Then, following the tutelage of the Cartan model, the subcomplex on which

Q2 = 0 is then given by

Eg = (Ẽg)G, (3.6)

where, as before, the raised G denotes the fact that we are restricting to the G-

invariant subcomplex. The base space, over which we understand Eg as a bundle, is

given by the complex

B = (S•(LieDiff+(X))⊗ Ω•(Met(X)))Diff+(X) (3.7)

The di�erential for this complex is given by d of (1.10)-(1.11).

Projecting down from Eg to B de�nes a chain map

π∗ : Eg −→ B (3.8)



124

As such, the following diagram commutes.

Eg Eg

B B

Q

π∗ π∗

d

At a formal level, the map π∗ is equivalent to the path integral over the twisted vector

multiplet. Therefore, the above diagram can be expressed as

∫
[dVM]QA = d

(∫
[dVM]A

)
, (3.9)

for all A ∈ Eg. Hence, we conclude that

dZ[g,Ψ,Φ] =

∫
[dVM]Q

(
e−SUV

)
= 0. (3.10)

Since exp[−SUV] cannot be written as a Q-exact element of Eg, we then conclude that

Z[g,Ψ,Φ] is a nontrivial element of HDiff+(X)(Met(X)).

Now, before expanding Z[g,Ψ,Φ] into elements of homogenous gravity degree, we

must investigate some properties of the action SUV.

3.3 Preliminary Relations

Our action SUV has the explicit form

SUV = SUV − 1

2

∫
X
d4x

√
gΨµνΛUV

µν +

∫
X
d4x

√
gΦσZUV

σ +

∫
X
d4x

√
gΨµσΨν

σΥ
UV
µν ,

(3.11)

where we have collected terms into increasing gravity degree, so that SUV,Λ
UV, ZUV,ΥUV

are each functionals of the twisted vector multiplet �elds and metric only. Since the



125

entire action must have total degree zero, the gauge degrees of these functionals must

be negative. We repeat the de�nition for each term. At degree zero, we have the

original Donaldson-Witten action, with

SUV = SLoc + SPro + SPot − 2πiτ0k (3.12)

= Q(V Loc
UV + V Pro

UV + V Pot
UV ) +

iτ0
8π2

∫
X
TrFA ∧ FA. (3.13)

In a slight change of overall normalization from (0.137)-(0.139) to agree with (2.12),

we have

SLocUV =
1

2g20

∫
X
d4x

√
gTr

[
1

2
F+
µνF

µν
+ − 1

2
DµνD

µν − 2χµν(D
µψν)+ +

1

2
χµν [ϕ, χ

µν ]

]
,

(3.14)

SProUV = − 1

2g20

∫
X
d4x

√
gTr [2ηDµψ

µ + 2λ[ψµ, ψ
µ]− 2λDµD

µϕ] , (3.15)

SPotUV = − 1

2g20

∫
X
d4x

√
gTr

[
2[ϕ, λ]2 − 2η[ϕ, η]

]
, (3.16)

V Loc
UV =

1

2g20

∫
X
d4x

√
gTr

[
1

2
(F+

µν +Dµν)χ
µν

]
, (3.17)

V Pro
UV = − 1

2g20

∫
X
d4x

√
gTr [2λDµψ

µ] , (3.18)

V Pot
UV = − 1

2g20

∫
X
d4x

√
gTr [2η[ϕ, λ]] . (3.19)

At degree one, we have

ΛUV
µν =

1

2g20
Tr

[
1

2
Fµ

ρχνρ +
1

2
Fν

ρχµρ −
1

4
gµνF

ρσFρσ

+2(Dµλ)ψν + 2(Dνλ)ψν − 2gµν(Dσλ)ψ
σ + 2gµνη[ϕ, λ]

]
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Here, we recall that ΛUV
µν satis�es the relation

TUV
µν = QΛUV

µν , (3.20)

where TUV
µν is the energy-momentum tensor of the original Dondaldson-Witten theory,

and thus, in our new language, satis�es41,

d̃SUV =
1

2

∫
X
d4x

√
gΨµνTUV

µν . (3.21)

At degree two we have two terms. The �rst is

Zσ =
1

2g20
Tr

[
1

4
χµνDσχµν −

1

2
Dµ(χ

µνχσν) + 2(Dρλ)Fσ
ρ − 2(Dσλ)[ϕ, λ]− 2η[ψσ, λ]

]
.

(3.22)

The second degree two term has the form

Υµν =
1

8g20
Tr [χµ

σχνσ] . (3.23)

This action was constructed by taking, as de�nition,

SUV = Q(V Loc
UV + V Pro

UV + V Pot
UV ) +

iτ0
8π2

∫
X
TrFA ∧ FA. (3.24)

In order to streamline future computations, let us understand how the action

closes under Q. We can split the action into bidegree and write

SUV = S(0,0)
UV + S(−1,1)

UV + S(−2,2)
UV . (3.25)

41It is not the energy-momentum tensor of the full theory of twisted supergravity
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With this, we can understand the action of Q in bidegrees as relations between terms

of the same bidegree. First, we have

Q(1,0)S(0,0)
UV = QSUV = 0, (3.26)

which is just the statement that Q2 = δϕ and that SUV is gauge invariant. Next, we

have

Q(0,1)S(0,0)
UV +Q(1,0)S(−1,1)

UV = 0, (3.27)

which translates into

d̃SUV =
1

2

∫
X
d4x

√
gΨµνQΛUV

µν , (3.28)

aligning with our above comment that QΛUV
µν = TUV

µν . Continuing, we �nd

Q(−1,2)S(0,0)
UV +Q(0,1)S(−1,1)

UV +Q(1,0)S(−2,2)
UV = 0. (3.29)

This is the most complicated of the relations we will �nd, and tells us that

(K+∆H)SUV = d̃

(
1

2

∫
X
d4x

√
gΨµνΛUV

µν

)
−
∫
X
d4x

√
g
(
ΦσQZUV

σ +ΨµσΨν
σQΥUV

µν

)
.

(3.30)

While not eminently helpful, it is good to have the ability to write transformations

as Q-exact objects, as their expectation values will vanish. Next, we turn to

Q(−1,2)S(−1,1)
UV +Q(0,1)S(−2,2)

UV = 0, (3.31)
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which gives

1

2

∫
X
d4x

√
gΨµνKΛUV

µν = −d̃

(∫
X
d4x

√
g
(
ΦσZUV

σ +ΨµσΨν
σΥ

UV
µν

))
. (3.32)

Finally, in the highest gravity degree, we note

Q(−1,2)S(−2,2)
UV =

∫
X
d4x

√
gΦσKZUV

σ = 0. (3.33)

Another common computation will be Q(0,1)S(−1,1)
UV , so it is worth conducting now.

We have

S(−1,1)
UV = −1

2

∫
X
d4x

√
gΨµνΛµν = −d̃(V Loc

UV + V Pro
UV + V Pot

UV ), (3.34)

So that

d̃S(−1,1) = −d̃2(V Loc
UV + V Pro

UV + V Pot
UV ) (3.35)

Term by term, we have

d̃2ΨLoc =
1

2g20

∫
X
d4x

[
LΦ(

√
ggµρgνσ)Tr[

1

2
χµνFρσ]−

1

4
ΨρσΨρ[µ

√
gTr[χν]σF

µν,+]

−√
gTr[

1

2
χµν((L(A)

Φ F+)µν − (L(A)
Φ F )+µν)]

]
, (3.36)

d̃2ΨPro = − 1

2g20

∫
X
d4xLΦ(

√
ggµρ)Tr [2λDµψρ] , (3.37)

d̃2ΨPot = − 1

2g20

∫
X
d4xLΦ(

√
g)Tr [2η[ϕ, λ]] , (3.38)

which gives us the result. Now, let us return to Z[g,Ψ,Φ]
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3.4 Expanding Z[g,Ψ,Φ]

Due to the exponential, Z[g,Ψ,Φ] is a polyform in HDiff+(X)(Met(X)). We would like

to work with objects of �xed degree, and therefore, we expand the di�erential in

gravity degree. This takes the form

Z[g,Ψ,Φ] =

∫
[dVM]

(
1− S(−1,1)

UV +
(
(S(−1,1)

UV )2 − S(−2,2)
UV

)
+ · · ·

)
e−SUV

= ⟨1⟩UV − ⟨S(−1,1)
UV ⟩UV + ⟨(S(−1,1)

UV )2 − S(−2,2)
UV ⟩UV + · · · (3.39)

We now come to an important point. An astute observer may cry foul, claiming

that clearly the elements of odd gravity degree vanish, as they are the expectation

values of an odd number of twisted vector multiplet fermions. For example, since the

gravitinos are background �elds, we have

⟨S(−1,1)
UV ⟩UV =

1

2

∫
X
d4x

√
g(x)Ψµν(x)⟨ΛUV

µν (x)⟩UV, (3.40)

where ΛUV exclusively contains terms with one fermion. Standard lore dictates that

such terms must vanish as they are Grassmann valued, but in this case the lore is

wrong! To see this, suppose we have b1 = 1, so the space H1(X) is one dimensional.

In our twisted theory, the ψ are elements of ΠΩ1(X), and therefore our path integral

measure contains a single zeromode ψ0 associated to the generating element of H1(X).

Thus, with an understanding of fermionic integral, our expectation value will contain

a factor of the form ∫
[dψ0]ψ0 = 1. (3.41)
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Of course, if b1 > 1, there are an insu�cient number of insertions to �soak� up all the

zeromodes and thus the expectation would vanishes.42 Inspecting the explicit terms

in ΛUV, we see that the terms with χ can lead to non-zero contributions when b+2 = 1,

and since H0(X) is always one dimensional, the term with η always stands a chance

of surviving. Hence, we are not upset by correlation functions with an odd number

of fermionic insertions and happily continue on. We refer the reader to [63, 64] for a

more thorough treatment of this point in the context of the original Donaldson-Witten

invariants.

Moving along, we de�ne

Z[g,Ψ,Φ] =
∞∑
m=0

Z[m], (3.42)

where the sum is over increasing gravity degree. Since d is homogeneous of degree

one, we conclude that

dZ[m] = 0 for all m. (3.43)

We will soon go through the �rst few degrees to see how this works. Throughout, we

will make use of the fact that the expectation value of any Q-exact term is zero, that

is, we have, for all A ∈ E,

∫
[dVM]QAe−SUV = ⟨QA⟩UV = 0. (3.44)

42The nonvanishing of fermionic expectation values is not restricted to the twisted theory. Indeed,
the one point insertion of a free massive Majorana fermion on a torus with RR boundary conditions
(periodic in both chiralities) is nonvanishing as can be gleaned by reading between the line of Section
12.4.1 of [29].



131

Consider our stated identity

d⟨A⟩UV = ⟨QA⟩UV. (3.45)

Note that d is a di�erential of bidegree (0, 1) whileQ has pieces of bidegrees (1, 0), (0, 1)

and (−1, 2). Suppose that A has bidegree (p, q). The right hand side of the above

then has an integrand with pieces of bidegrees (p+1, q), (p, q+1), and (p− 1, q+2).

Naturally, since the expectation value of Q-exact pieces vanishes, we are left with a

piece of bidegree (p, q+1) and one of bidegree (p− 1, q+2). Meanwhile the left hand

side is only of bidegree (p, q+1). Therefore, the (p−1, q+2) term must vanish on its

own. From a imprecise perspective, since Q(−1,2) is an artifact of the vector supersym-

metry (ignoring ∆H), the desired statement may be an analogous to ⟨QA⟩UV = 0,

but for the vector supersymmetry. Nevertheless, this ignores the fact that we have

�xed ourselves to a symmetric gravitino background and do not work with a rigid

vector supersymmetry, which is not guarenteed to exist on an arbitrary smooth four

manifold. We will see that these terms of bidegree (p− 1, q + 2) vanish in dZ[0], but

it is not as easily seen in dZ[m>0]. Given the strength of our chain map argument, we

conjecture that there is a series of Ward identities which will save the day.

3.4.1 Z[0]

At degree zero, we have the usual Donaldson-Witten partition function of

Z[0][g] =

∫
[dVM] e−SUV = ⟨1⟩UV. (3.46)
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The closure goes as

dZ[0][g] =

∫
[dVM](−QSUV)e−SUV ,

= −
∫

[dVM](QSUV + d̃SUV + (K+∆H)SUV)e
−SUV

(3.47)

The �rst term clearly vanishes. Next, using (3.28) and (3.30), we �nd

dZ[0][g] =

∫
X
d4x

√
g⟨QΛUV

µν ⟩Ψµν + ⟨d̃S(−1,1)
UV ⟩

+

∫
X
d4x

√
g
(
Φσ⟨QZUV

σ ⟩+ΨµσΨν
σ⟨QΥUV

µν ⟩
)

(3.48)

Again dropping the Q-exact terms, and summing the term of (3.36)-(3.38), we �nd

dZ[0][g] =
1

2g20

∫
[dVM]

∫
X
d4x

[
LΦ(

√
ggµρgνσ)Tr[

1

2
χµνFρσ]−

√
gTr[

1

2
χµν((L(A)

Φ F+)µν

−(L(A)
Φ F )+µν)]−

1

4
ΨρσΨρ[µ

√
gTr[χν]σF

µν,+]

− LΦ(
√
ggµρ)Tr [2λDµψρ]− LΦ(

√
g)Tr [2η[ϕ, λ]]

]
e−S

UV

(3.49)

Utilizing Fubini's theorem with our vector multiplet and spacetime integral, we can

harmlessly pass the Lie derivatives LΦ over all the integrated vector multiplet �elds,

which become �xed values. This results in a total derivative over X which vanishes

as our manifold is without boundary. Hence, we �nd a remaining

dZ[0][g] = −1

4

∫
X
d4x

√
gΨρσΨρ[µ⟨Tr[χν]σF µν,+]⟩UV, (3.50)

which we recognize as stemming from the curvature of the projected connection. Our

�nal maneuver is to use a equation of motion of the original Donaldson-Witten theory,
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particularly the famous instanton equation F+
A = 0. Thus we conclude, as expected,

that

dZ[0][g] = 0. (3.51)

We note that we have to work a pinch harder to show this than in the original case

of ZDW[g]. This is due to the beforementioned (p − 1, q + 2) term (here manifesting

as (−1, 2)).

3.4.2 Z[1]

The only degree one gravity �eld is Ψ, so we have

Z[1][g,Ψ] =

∫
[dVM]

(
1

2

∫
X
d4x

√
gΨµνΛUV

µν

)
e−SUV

= −1

2

∫
X
d4x

√
g(x)⟨ΛUV

µν (x)⟩UVΨµν(x).

(3.52)

The d-closure goes as

dZ[1][g,Ψ] =

∫
[dVM]

(
Q
(
1

2

∫
X
d4x

√
gΨµνΛUV

µν

)
−
(
1

2

∫
X
d4x

√
gΨµνΛUV

µν

)
(QSUV)

)
e−SUV .

(3.53)

Here, we can immediately drop the terms that are Q-exact. Further, from the rea-

soning of the last section, the expectation value of d̃S(−1,1)
UV also vanishes. This leaves

us with

dZ[1][g,Ψ] =

∫
[dVM]

(
(K+∆H)S(−1,1)

UV
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−
(
1

2

∫
X
d4x

√
gΨµνΛUV

µν

)
(d̃+ (K+∆H))SUV

)
e−SUV

(3.54)

Using (3.28) we see that one term is the expectation value of Q(S(−1,1)
UV S(−1,1)

UV ), which

vanishes. This leaves us with

dZ[1][g,Ψ] =

∫
[dVM]

(
KS(−1,1)

UV −
(
1

2

∫
X
d4x

√
gΨµνΛUV

µν

)
(K+∆H)SUV

)
e−SUV .

(3.55)

At present, neither of these two terms obviously vanishes. Explicitly, they are

⟨KS(−1,1)⟩ =
∫

[dVM]

(
− 1

4g20

∫
X
d4x

√
gΨµνTr [4(Dµλ)Φ

σFσν − 2gµν(Dσλ)Φ
ρFρ

σ

+2gµνΦ
σ(Dσλ)[ϕ, λ] + 2gµνη[Φ

σψσ, λ]]

)
e−SUV ,

(3.56)

and

⟨S(−1,1)
UV (K+∆H)S

UV⟩ =
〈(

1

2

∫
X
d4x

√
gΨµνΛUV

µν

)
× 1

2g20

∫
X
d4y

√
gTr

[
1

4
ΨρσΨρ[µχν]σ(F

µν
+ +Dµν)

+
1

4
ΨρσΨρ

µχµνD
ν
σ +

1

4
χµν [Φ

σψσ, χ
µν ]

− 2Φσ(Dσλ)Dµψ
µ + 2ηDµ(Φ

σFσ
µ)

+ 4λ[ΦσFσµ, ψ
µ] + 2λDµD

µ(Φσψσ)

+ 4[Φσψσ, λ][ϕ, λ]− 2Φσ(Dσλ)[ϕ, η]

+ 2η[ϕ,ΦσDσλ]

]〉
UV

. (3.57)
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With the assurance that dZ[1] = 0, we conjecture that these two terms must vanish

due to a nontrivial Ward identity, explicitly

⟨KS(−1,1)
UV ⟩UV = ⟨S(−1,1)

UV (K+∆H)SUV⟩UV. (3.58)

3.4.3 Z[m>1]

In higher degree, we take it as a fact that

dZ[m>1] = 0. (3.59)

Explicitly computing the variation on the left hand side one can obtain an in�nite

number of conjectural non-trivial Ward identities. We leave the exploration of said

identities to a future project.

4 The Future

We have provided the construction of the Cartan model of equivariant cohomology for

HG(M) and shown its connection to truncated twisted supergravity on a symmetric

gravitino background. In addition, we provided both a UV and IR action principle,

allowing for a construction of our invariants Z[g,Ψ,Φ] which can be understood as

elements of HG(X). This is chapter zero in a unwritten longer story. Herein we

present prologues to various potential sequels.
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4.1 The Observables

We expect that there will be generalizations of the �n-observable� of Donaldson-

Witten theory to family observables.43 From this perspective the above �partition

function� plays the role of the trivial observable. So call higher degree observables

will be associated to a homology classes of the four manifold X, giving a generalization

of the Donaldson map µD. In the same way that we conceived the partition function

ZDW[g] as the gravity degree zero part of an expansion of Z[g,Ψ,Φ], we hope to

realize the Donaldson-Witten polynomial invariants ZDW[g, p,Σ] in (0.152) as the

gravity degree zero part of a similar expansion. Naturally things are not so simple.

Instead we present three di�erent perspective on where these family observables may

be hiding.

4.1.1 Naive Family Invariants

On the gauge Cartan base �elds, we have

QAµ = ψµ, Qψµ = −Dµϕ+ ΦσFσµ,

Qϕ = −Φσψσ. (4.1)

This leads us to the rather interesting �ascent & descent� equation on the original

n-observables of (0.127)-(0.131)

QO(n) = dO(n−1) + ιΦO(n+1), (4.2)

43We are in part led to this conclusion from the math literature on family invariants cf. [57, 49]



137

where ιΦ is the interior derivative along the vector �eld Φ. Thus, for Σn without

boundary, we have

QO(n)(Σn) =

∫
Σn

ιΦO(n+1). (4.3)

This indicates that O(n)(Σn) are, in general, not objects in the cohomology of HG(M).

Further, recall our chain map argument in (3.9), which states that

d⟨A⟩UV = ⟨QA⟩UV (4.4)

for anyA ∈ Eg. Thus, sinceQO(n)(Σn) ̸= 0, we �nd that it is not immediately obvious

that d⟨O(n)(Σn)⟩ = 0. Hence, due to the gravity degree two �elds Φ we have no reason

to suspect that ⟨O(n)(Σn)⟩UV is an element ofHDiff+(X)(Met(X)). In the original theory,

prior to working with the equivariant di�erential d, these expectation values were seen

to be formally independent of the metric and thus elements of H0
Diff+(X)(Met(X)).

Nevertheless, one is naturally led to de�ne the naive generalized n-observable as

O(n)[g,Ψ,Φ,Σn] =

∫
[dVM]O(n)(Σn)e

−SUV . (4.5)

Focusing on the case of n = 0, we have

O(0)[g,Ψ,Φ, p0] =

∫
[dVM]

1

2
Tr[ϕ2(p0)]e

−SUV . (4.6)

Expanding, at degree zero we have the original expectation value of the 0-observable,

namely

O(0)[0][g, p0] = ⟨O(0)(p0)⟩UV =

∫
[dVM]

1

2
Tr[ϕ2(p0)]e

−SUV . (4.7)
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This is known to be formally independent of the metric for b+2 > 1, and thus it should

be the case that dO(0)[0][g, p0] = 0, but due to the second term in our �ascent &

descent� equations (4.2), we instead �nd

dO(0)[0][g, p0] = −Φσ⟨Tr[ψσ(p0)ϕ(p0)]⟩UV, (4.8)

which in principle does not vanish for all X. This, at present, remains a mystery and

stems from the bidegree (−1, 2) part of our di�erential Q.

4.1.2 Donaldson's Construction

Turning to an alternative direction, recall that for a �xed instanton number k, the

Donaldson invariants are counting, with signs, the numbers of instantons that can

be put on the manifold X. In the Mathai-Quillen formalism, we understand these

invariants as the integral of equivariant cohomology classes HG(A(P )) over Mk,g.

Therefore, if the virtual dimension of Mk,g is greater than zero, say d > 0, the

invariants vanishes unless one inserts appropriate n-observables, so that their total

degree as elements of HG(A(P )) equals d. We can then understand the n-observables

as objects which �lower� the dimension of the set of allowed instantons on X.

On the other hand, suppose that the virtual dimension of the moduli space Mk,g

is d < 0. This tells us that, with this �xed k, X will generically not support any

instanton solutions. Nevertheless, considered over a d parameter family of metrics

γd, there will generically be a �nite number of metrics in the family on which X does

support a �nite number of instantons. In principle, the integral of Z[d][g,Ψ,Φ] over

γd will count, again with signs, the number of instantons that exist somewhere in the

family. Thus, a family of metrics will �raise� the dimension of the moduli space.

One known sketch of the combination of these ideas is found in [24], which we
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resurrect here. Suppose that the dimension of Mk,g is generically d+ 2n with d < 0.

Moreover, let us take γd to be parameterized by t ∈ B for some closed, compact

subspace B ⊂ Rd. We can then de�ne the family moduli space associated to γd as

Mk,γd =

{
([A], t) ∈ A/G ×B

∣∣∣∣ [A] ∈ Mk,gt

}
. (4.9)

Next, consider a generic surface Σ in X. Any irreducible connection which satis�es

F+
A = 0 will remain irreducible on Σ, and thus we have the restriction map

RΣ : Mk,g −→ (A∗/G)Σ, (4.10)

where (A∗/G)Σ is the space of irreducible connections on Σ. Now, our equivariant

cohomology class O(2)(Σ) is pulled back from (A∗/G)Σ via RΣ. In (A∗/G)Σ we can

choose a generic codimension two submanifold which represents O(2)(Σ) before it was

pulled back. We call the preimage under RΣ of this codimension two submanifold

VΣ ⊂ Mk,g. Donaldson then de�nes an invariant σ[γd, [Σ1], . . . , [Σd]] which counts

the number of intersections Mk,γd ∩ VΣ1 ∩ · · · ∩ VΣd
. It is further claimed that this

invariant de�nes an cohomology class of Hd(Met(X)/Diff+(X)).44Here, we see an in-

variant where both observables and families conspire to arrive at a zero dimension set

of permissible instantons on X. At present there is no known QFT representation of

this construction.

44Technically, it is an element of the twisted cohomology Hd(Met(X)/Diff+(X),Π), where Π is the
local coe�cient system over Met(X)/Diff+(X) corresponding to the representation of the Diff+(X)
on the multilinear, Z2-valued functions in the homology of X.
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4.1.3 Universal Chern Class

Let us begin by recalling the BRST model of (1.80)-(1.87). Specializing to the gauge

half of the model, we have

dC,GAµ = ψµ +Dµc, dC,Gψµ = −Dµϕ− [c, ψµ], (4.11)

dC,Gc = ϕ− 1

2
[c, c], dC,Gϕ = [ϕ, c]. (4.12)

In [6], the n-observables were collectively identi�ed as the second Chern class of

a universal bundle. On this bundle there is a universal connection given by the

polyform

AG = A+ c. (4.13)

Further, identifying the di�erential of this bundle as the sum of the exterior derivative

of X and the BRST di�erential, we have the universal curvature given by

FG = (d+ dC,G)AG +
1

2
[AG,AG] = FA + ψ + ϕ. (4.14)

This bundle has a bigrading of form degree and gauge degree so that [AG] = 1 and

[FG] = 2. We then have the BRST algebra relations equivalent to

(d+ dC,G)AG = FG − 1

2
[AG,AG], (4.15)

(d+ dC,G)FG = −[AG,FG]. (4.16)

For G = SU(2), we have the second Chern class for the universal bundle given by

OG =
1

2
TrF2

G, (4.17)



141

which satis�es

(d+ dC,G)OG = 0. (4.18)

Spliting OG into form degrees, we have

OG = O(0) −O(1) +O(2) −O(3) +O(4), (4.19)

where the choice of signs allows us to identify the above splitting as our n-observables

densities. We then see (4.17) as equivalent to the descent equation. It is important

to note that, even though AG contains the vertical �eld c, the universal curvative FG

is entirely horizontal, and thus each of the n-observables, when integrated over the

appropriate cycle, will give a basic class of HG(A(P )).

For the di�eomorphism side of our Cartan model in [72, 73], and expanded upon in

[81, 90] there is also a construction the universal Chern class for a theory of topological

gravity. In these works, the gravititational �elds are dynamical, which is distinctly

not the settling of our theory. Nevertheless, there may be something to learn in the

analysis. Here, the BRST transformations are now

dC,Diff+gµν = Ψµν −∇µξν −∇νξµ, (4.20)

dC,Diff+Ψµν = −ξσ(∇σΨµν)− (∇µξ
σ)− (∇νξ

σ)Ψµσ +∇µΦν +∇νΦµ, (4.21)

dC,Diff+ξ
µ = Φµ − ξσ(∇σξ

µ), (4.22)

dC,Diff+Φ
µ = −ξσ(∇σΦ

µ) + Φσ(∇σξ
µ). (4.23)

Unlike the gauge case, our coordinates g on Met(X) are not connections, so our

universal connection is more complicated. We have it as

Γ̃µν = Γµλνdx
λ +

1

2
Ψµ

ν +∇νξ
µ, (4.24)
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where Γµλν is the standard Levi-Civita connection. This leads to the universal cur-

vature of

R̃µ
ν = (d+ dC,Diff+)Γ̃

µ
ν + Γ̃µλ ∧ Γ̃λν (4.25)

=
1

2
Rµ

µρσdx
ρ ∧ dxσ + (P µ

νρ −Rµ
νρλξ

λ)dxρ (4.26)

+
1

2
(Qµ

ν + 2P µ
νρξ

ρ +Rµ
νρλξ

ρξλ), (4.27)

where

Pµνλ =
1

2
(∇νΨλµ −∇µΨλν), (4.28)

Qµν = −1

2
ΨνλΨ

λ
ν − (∇νΦµ −∇µΦν). (4.29)

Here, we see that the universal curvature has dependence on the degree one generators

of the Weil algebra. This is to be distinguished from the gauge case, where the

curvature was happily horizontal. Nevertheless, we can form the second Chern class

of the universal bundle and split it into form degree as

ODiff+ = R̃µ
ν ∧ R̃ν

µ (4.30)

= O(0)
Diff+

+O(1)
Diff+

+O(2)
Diff+

+O(3)
Diff+

+O(4)
Diff+

, (4.31)

and they indeed, by construction, satisfy a set of descent equations

dC,Diff+O
(n)
Di� = −dO(n−1)

Di� (4.32)

and thus, if integrated over appropriate cycles, are closed under the di�erential dC,Diff+ .

Nevertheless, outside ofO(4)
Diff+

, which is a well known topological invariant, eachO(n)
Diff+
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contains explicit dependence on ξµ and is therefore not an element of equivariant

cohomology.

Inspired by these constructions, one could attempt to construct a universal bundle

for our full HG(M) model. In such a construction there would be observables that

mix elements of the gauge Cartan model and the di�eomorphism Cartan model. At

present this direction has not been fully explored.

***************Discussion of other options************

4.2 Computation

Another direction worthy of immediate attention is the computation of our invariants.

This will be done in two steps. First, one must �ow to the IR theory and repeat the

analysis of the u-plane of [71] for each Z
[n]
IR , where we de�ne

ZIR[g,Ψ,Φ] =

∫
[dVM]e−SIR , (4.33)

and likewise, split into gravity degrees as

ZIR[g,Ψ,Φ] =
∞∑
i=0

Z
[n]
IR . (4.34)

The Q closure of our theory assures us that these will equal the UV invariants of Z[n].

In computing the IR correlation functions, at the monopole and dyon point, we will

need to also introduce the generalized action for a twisted hypermultiplet coupled to

the dual U(1)D vector multiplet theory that is Q-closed. Since the original action at

this these points are a Q-exact part plus a topological part, the generalization should

be obvious, but does require an understanding of the hypermultiplets as modules

over HG(M). We also expect that the work of [50, 61] will be of use in any explicit
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calculations.

Assuming that the analysis can be carried out, the next step is to integrate Z
[n]
IR

over n-parameter families of metrics. Suppose we have some compact, connected

subset B ⊂ Rn which parameterizes a continuous n-parameter family of metrics γB.

We can then integrate over this family as

∫
B

dntZ
[n]
IR [g(t),Ψ(t),Φ(t)]. (4.35)

In this context, the Ψµν will realize their roles as forms on MetX. We have not yet

established the roles of the degree two Φ �elds in the integral. For the case of n = 1,

this integral can be made more explicit. Suppose we have a non-trivial di�eomorphism

f ∈ Diff+(X) with g0 = f ∗g1, for g0, g1 ∈ Met(X). We then take our family γ to be

a path in Met(X) between g0 and g1. Our family invariant associated to this path is

then

∫
γ

dtZ[1][gt,Ψt] = −1

2

∫ 1

0

dt

∫
X
d4x

√
gt(x)⟨ΛµνIR(x)⟩IRΨ

µν
t (x)

= −1

2

∫ 1

0

dt

∫
d4x

√
gt(x)⟨ΛµνIR(x)⟩IR

dgtµν(x)

dt
.

(4.36)

Given our construction of the integrand as a equivariant class in HDiff+(X)(Met(X)),

this should be independent of all metric data, namely the choice of γ, and the choice

of g0 and g1, so long as g0 = f ∗g1. Further, we expect that dependence on the choice

of di�eomorphism f is only up to choice of which component of Diff+(X) it is from,

hence (4.36) should be an invariant associated to elements of π0(Diff+(X)).

Together, these two steps of �owing to the IR and integrating over a family of

metrics will certainly meet with complications, but the results could potentially yield

exciting new classes of invariants which will help reveal the relatively unexplored
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topology of Diff+(X). It would also be of further interest to explore the connection of

these invariants to automorphic forms, as it is known that there is a deep connection

between the original Donaldson-Witten invariants and mock modular forms [13, 51,

60].

4.3 Wall Crossing

The original Donaldson-Witten invariants experience a phenomenon known as wall-

crossing. This occurs for b+2 = 1, where ZDW[g] is only piecewise constant on Met(X).

Generically, along a one-parameter family, there will be a point g∗ where there is an

anti-self-dual reducible connection, which will lead to a singularity in Mk,g∗ . Such an

occurrence will lead to a change in ZDW[g] on either side of g∗ in the family.

It is likewise the case that, for b+2 = n, a generic n-parameter family of metrics will

have a �nite number of points on which there is an anti-self-dual reducible connections.

Thus, if one �xes a n − 1-parameter family and varies the whole family along a

transverse path, one will experience wall-crossing in the invariant Z[n−1] integrated

over the n− 1-parameter family.

In the original analysis, wall-crossing is less a bug and more a feature being very

helpful in both understanding and computing the Donaldson-Witten invariants. We

hope that, if this higher order wall-crossing exists, it is likewise a boon to the theory.

5 Conclusion

We have journeyed through the wild world of four manifolds, delved the depths of

supersymmetry, and gathered up arms of equivariant cohomology and supergravity to

wage battle against the unknown. Nevertheless, this is just the beginning and there

is much work to be done and far more questions than when we started. Still, one
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question shines above all other: what is the role of smooth structures in physics?
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Appendices

A Conventions

A.1 Form Conventions

For a given p form A(p) ∈ Ωp(X), we write it locally as

A(p) =
1

p!
Aµ1·µpdx

µ1 ∧ · · · ∧ dxµp . (A.1)

Taking B(q) ∈ Ωq(X), our wedge product of A(p) and B(q) is given by

A(p) ∧B(q) =
1

p!q!
A[µ1···µpBµp+1···µp+q ]dx

µ1 ∧ · · · dxµp ∧ dxµp+1 ∧ · · · ∧ dxµp+q . (A.2)

This de�nes

(A(p) ∧B(q))µ1...µpµp+1···µp+q =
(p+ q)!

p!q!
A[µ1···µpBµp+1···µp+q . (A.3)

The exterior derivative on A(p) gives a (p+ 1) form dA(p) ∈ Ωp+1(X), given by

dA(p) =
1

p!
∂[µ1Aµ2···µp+1]dx

µ1 ∧ · · · ∧ dxµp ∧ dxµp+1 (A.4)

=
1

(p+ 1)!
(dA(p))µ1···µp+1dx

µ1 ∧ · · · ∧ dxµp ∧ dxµp+1 . (A.5)

The Hodge star on A(p) gives a (d−p) form, where d is the dimension of our manifold,

almost always taken as d = 4. We have

⋆A(p) =
1

p!(d− p)!

√
gϵµ1···µpµp+1···µdA

µ1···µpdxµp+1 ∧ · · · ∧ dxµd . (A.6)
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Hence we obtain

A(p) ∧ ⋆A(p) =
1

p!
Aµ1···µpA

µ1···µp√gddx. (A.7)

With these conventions, the various contractions of the �eld strength FA ∈ Ω2(X, adP )

we encounter satisfy

FA ∧ ⋆FA =
1

2
FµνF

µν√gd4x, (A.8)

FA ∧ FA =
1

4
ϵµνρσFµνFρσd

4x, (A.9)

F+
A ∧ F+

A =
1

2
F µν
+ F+

µν

√
gd4x, (A.10)

F−
A ∧ F−

A = −1

2
F µν
− F−

µν

√
gd4x. (A.11)

Further, for χ ∈ ΠΩ2,+
g (X, adP ) and D ∈ Ω2,+

g (X, adP ), we have

χ ∧D =
1

2
χµνD

µν√gd4x. (A.12)

A.2 Spinor Conventions

Our conventions for raising and lowering su(2)+ and su(2)− indices follow the North-

West South-East conventions. Hence,

λA = ϵABλB, λA = λAϵAB, (A.13)

λ
Ȧ
= ϵȦḂλḂ, λȦ = λ

Ȧ
ϵȦḂ, (A.14)

where ϵAB = ϵAB = −ϵȦḂ = −ϵȦḂ, and ϵ12 = +1. In particular, note that this means

that, for any spinorial objects λ and ψ, we have

ψAλA = ψAϵABλ
B = −ψAϵBAλB = −ϵBAψAλB = −ψBλB = −ψAλA, (A.15)
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and thus

λAλA = 0. (A.16)

In addition, there are a number of useful identities, such as

ϵABϵCB = δAC , ϵABϵAB = 2, and ϵABϵCD = δACδ
B
D − δADδ

B
C . (A.17)

Turning to the construction of our intertwiners, the standard Pauli matrices are given

by

τ 1 =

0 1

1 0

 , τ 2 =

0 −i

i 0

 , τ 3 =

1 0

0 −1

 . (A.18)

We then write −→τ = (τ1, τ2, τ3), to denote the Pauli vector. We can then de�ne the

Euclidean σ-matrices as

(σa)
AḂ = (−→τ ,−i12)

AḂ and (σ̃a)ȦB = (−→τ , i12)ȦB. (A.19)

These matrices serve as intertwiners between the bi-spinorial representations and

vector representation of SO(4). Since the majority of our analysis involves curved

space, we choose to de�ne these matrices with the frame index a, but when we are

restricting our analysis to �at Euclidean space, we often abusively write the spacetime

indices µ, ν, &c. When we are indeed working in curved space, we will often suppress

the vielbein 1-form, and de�ne

(σµ)
AḂ = eµ

a(σa)
AḂ, and (σ̃µ)ȦB = eµ

a(σ̃a)ȦB (A.20)
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These σ matrices satisfy the relations

σaσ̃b + σbσ̃a = 2δab12, σ̃aσb + σ̃bσa = 2δab12, (A.21)

(σa)
† = σ̃a, (σ̃a)ȦA = (σa)AȦ, (A.22)

(σa)
AḂ(σ̃a)ĊD = 2δADδ

Ḃ
Ċ

(A.23)

At a notational level, we can use these σ-matrices to change between the frame indices

a and the two component indices. For some object Va we have

Va =
1√
2
VAȦ(σa)

AȦ, and likewise VAȦ =
1√
2
(σa)AȦVa. (A.24)

This normalization is used exclusively in the Excursus of twisted supergravity, as it

allows for the simple relation eµ
AȦ
eBḂµ = δBAδ

Ḃ
Ȧ
. In Section 0, we change indices without

the prefactor.

We also have the self-dual and anti-self-dual projectors, de�ned by

(σab)AB =
1

2

[
(σa)AḂ(σ̃b)ḂB − (σb)AḂ(σ̃a)ḂB

]
, (A.25)

(σ̃ab)Ȧ
Ḃ =

1

2

[
(σ̃a)ȦC(σ

b)CḂ − (σ̃b)ȦC(σ
a)CḂ

]
, (A.26)

which have the explicit form

σab =



0 iτ 3 −iτ 2 iτ 1

−iτ 3 0 iτ 1 iτ 2

iτ 2 −iτ 1 0 iτ 3

−iτ 1 −iτ 2 −iτ 3 0


, and σ̃ab =



0 iτ 3 −iτ 2 −iτ 1

−iτ 3 0 iτ 1 −iτ 2

iτ 2 −iτ 1 0 −iτ 3

iτ 1 iτ 2 iτ 3 0


.

(A.27)
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B Toy Weil Algebra

Here we present a simpli�ed version of the Lie superalgebra of the Weil algebra,

considering a semi-direct product of two �nite dimensional Lie groups. Let G be a

�nite dimensional Lie group, with normal subgroup G1 and subgroup G2.
45 We then

have the homomorphism ϕ : G2 → Aut(G1) taking h ∈ G2 to ad h i.e., ϕ(h)(g) =

hgh−1 for g ∈ G1. We can then construct the semi-direct product G1 ⋊ G2, whose

group structure is given by

(g1, h1)(g2, h2) = (g1h1g2h
−1
1 , h1h2) . (B.1)

In this group, the identity is simply the tuple of identities from the original Lie groups

i.e., (e1, e2). Inverse are as (g, h)
−1 = (h−1g−1h, h−1). In addition, the splitting lemma

indicates that we have the short exact sequence

1 −→ G1
ι−−−→ G1 ⋊G2

π−−−→ G2 −→ 1 , (B.2)

and a group homomorphism ψ : G2 → G1⋊G2 such that π ◦ψ = idG2 . Explicitly, we

have ι(g) = (g, e2), π(g, h) = h and ψ(h) = (e1, h), so that we may write ι(ϕ(h)(g)) =

ψ(h)ι(g)ψ(h−1).

Let Lie(G1) = g1 and Lie(G2) = g1 be the Lie algebra of G1 and G2 respectively.

The Lie algebra of our semi-direct product G1 ⋊ G2 is govern by the derivation dϕ :

g2 → Der(g1) with explicitly form dϕ(β)(α) = ad β(α) = [β, α] for α ∈ g1 and β ∈ g2,

where the Lie bracket here is the one inherited from Lie(G) = g, which contains both

g1 and g2 as subalgebra. The fact that this is a derivation follows from the Jacobi

45This mimics our case of G1 = G and G2 = Diff+(X), since for f ∈ Diff+(X) and g ∈ G, we indeed
have fgf−1 = f∗(g) ∈ G i.e., G is a normal subgroup of the full group of G ⋊ Diff+(X).
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identity. The Lie bracket on Lie(G1 ⋊ G2), distinguished from that of g by a double

bracket, is then de�ned as

[[(α1, β1), (α2, β2)]] = ([α1, α2] + dϕ(β1)(α2)− dϕ(β2)(α1), [β1, β2])

= ([α1, α2] + [β1, α2]− [β2, α1], [β1, β2]) .

(B.3)

Given that G1 is normal in G, we have [β, α] ∈ g1 for all α ∈ g1 and β ∈ g2. Note

that the above Lie bracket is indeed antisymmetric and satis�es the Jacobi identity

as a consequence of the Jacobi identity on each factor.

Let us consider a split basis of Lie(G1 ⋊ G2). Suppose that dimG1 = N1 and

dimG2 = N2 and that {t(1)a } and {t(2)i } are bases of each g1 and g2 respectively, where

a = 1, . . . , N1 and i = N1 + 1 . . . , N1 + N2. We will always use indices a, b, c for g1

and i, j, k for g2. Since both G1 and G2 are subgroups of the abstract Lie group G,

we can use the structure constants of Lie(G) to de�ne those of our subalgebra. This

gives

[t(1)a , t
(1)
b ] = fab

ct(1)c , (B.4)

[t
(2)
i , t

(2)
j ] = fij

kt
(2)
k , (B.5)

where fab
c and fij

k are de�ned in G restricted to the relevant indices for G1 and G2.

Next, we can specify a basis {TA} of g1 ⋊ g2, as 1 ≤ A ≤ N1 we have TA = (t
(1)
A , 0)

for 1 ≤ A ≤ N1 and TA = (0, t
(2)
A ) for N1 + 1 ≤ A ≤ N1 +N2. Then we can write

[[TA, TB]] = fAB
CTC , (B.6)

where fAB
C = −fBAC and fij

a = fai
j = 0 for all 1 ≤ a ≤ N1 and N1 + 1 ≤ i, j ≤

N1 + N2. This last constraint follows directly from the fact that G1 is normal in G.
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Note that when fai
b ̸= 0, this structure is distinguished from a direct product, as

such structure constants lead to the semi-direct product terms in the de�nition the

Lie bracket on Lie(G1 ⋊G2) above.

Our expression for the structure constants of Lie(G1 ⋊ G2) is a little opaque,

and thus we give it a partial exegesis. The cases where 1 ≤ a, b ≤ N1, namely

the indices for the g1 subalgebra, and we have [[Ta, Tb]] = fab
cTc. Likewise, for

N1+1 ≤ i, j ≤ N1+N2, we have [[Ti, Tj]] = fij
kTk. Were this a direct product of Lie

groups, this would be the whole story, but we have a semi-direct product, so there

are non-zero structure constants with mixed indices. Indeed, we have

[[Ta, Ti]] = [[(t(1)a , 0), (0, t
(2)
i )]] = (−[t

(2)
i , t(1)a ], 0) = (−fiact(1)c , 0) = fai

cTc ̸= 0 , (B.7)

where we have used the fact that [g1, g2] ∈ g1. Likewise, we have [[Ti, Ta]] = fia
cTc ̸= 0.

Next, let's turn to the Weil algebra W(Lie(G1 ⋊G2)). It is de�ned as the Koszul

algebra of the dual of Lie(G1 ⋊G2), that is,

W(Lie(G1 ⋊G2)) = S∗((Lie(G1 ⋊G2))
∨)⊗ Λ∗((Lie(G1 ⋊G2))

∨) . (B.8)

Given our basis {TA}, we have an induced dual basis {T̃A} through the Killing forms

on each algebra g1 and g2. In order for this to be a full basis for (g1 ⋊ g2)
∨, we

require the existence of a nondegenerate Killing form, which requires that g1 ⋊ g2

be semisimple. We can then take generators of this algebra as {φA}, the degree two

elements of the symmetric algebra, and {θA}, the degree one elements of the exterior

algebra. With these generators, we have the Koszul operator dW as a degree one
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di�erential on the algebra W , de�ned as

dWθ
A = ϕA − 1

2
fBC

AθBθCdWϕ
A = −fBCAθBϕC , (B.9)

where as always, repeated indices are summed. Taking the split basis, noting when

the structure constants vanish, we have

dWθ
a = ϕa − 1

2
fbc

aθbθc − fic
aθiθc , dWθ

i = ϕi − 1

2
fjk

iθjθk , (B.10)

dWϕ
a = −fbcaθbϕc − fbk

aθbϕk − fjc
aθjϕc , dWϕ

i = −fjkiθjϕk . (B.11)

Note that d2W = 0 and W has trivial cohomology. This re�ects that fact that W

serves as a model for the deRham complex of E(G1 ⋊ G2), which is contractible by

de�nition. In order to model E(G1 ⋊G2)'s free G1 ⋊G2 action, we require a degree

-1 di�erential operator IA whose action is de�ned as

IAθ
B = δA

B , IAϕ
B= 0 . (B.12)

We can further de�ne a degree zero di�erential operators LA which encode the in-

�nitesimal action of G1 ⋊ G2 on (g1 ⋊ g2)
∨ through the co-adjoint representation.

Here, we de�ne it through LA = IAdW + dWIA, giving

LAθ
B = −fACBθC , LAϕ

B= −fACBϕC , (B.13)

or, in the split basis, as

Laθ
b = −facbθc − fak

bθk , Laϕ
b = −facbϕc − fak

bϕk , (B.14)

Laθ
i = 0 , Laϕ

i = 0 , (B.15)
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and

Liθ
a = −ficaθc , Liϕ

b = −ficaϕc , (B.16)

Liθ
j = −fikjθk , Liϕ

j = −fikjϕk . (B.17)

Above, the mixed structure constants in Laθ
a and Laϕ

b are crucial to our discussion

as they encode the di�erence between a semi-direct product and a direct product

action. When we come to observables, we will see how these terms spoil the invariant

polynomials of g1, namely preventing them from being basic classes.
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C Ex. X = T4 and G = SU(2)

Here we work through the explicit example of the Weil algebra in this paper for the

case X a four torus and G = SU(2).

C.1 Di�eomorphisms

Let X = T4 = S1 × S1 × S1 × S1 be the four torus (with the standard smooth

structure). We are interested in the space of square integrable functions X, namely

the space L2(X). We have a basis for this space given by

fn⃗(θ⃗) = ein⃗·θ⃗ (C.1)

where n⃗ ∈ Z4 is a four vector of integers and θ⃗ ∈ X are points on the four torus. Any

function on X can then be written as a linear combination of the fns, i.e. for any

function F : X → C, we have

F (θ⃗) =
∑
n⃗∈Z4

Fn⃗fn⃗(θ⃗), (C.2)

with Fn⃗ ∈ C.

Next, we wish to consider the space of orientation preserving di�eomorphism on

X, denoted by Diff+(X). This space has a group structure given by the composition

of maps. Locally, the Lie algebra of Diff+(X), denoted by diff(X), is the space of

all vector �elds on X with Lie bracket given by the Lie derivative of vector �elds.

Explicitly, a basis for diff(X) is given by elements of the form

η(n⃗,µ)(θ⃗) = fn⃗(θ⃗)
∂

∂θµ
= ein⃗·θ⃗

∂

∂θµ
. (C.3)
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We can then write any di�eomorphism η as

η(θ⃗) =
4∑

σ=1

∑
n⃗∈Z4

ησn⃗η(n⃗,σ)(θ⃗) (C.4)

with ησn⃗ ∈ C. At times we will have occasion to write

ησ(θ⃗) =
∑
n∈Z4

ησn⃗e
in⃗·θ⃗, (C.5)

where we have conducted the sum over the Fourier modes. Employing summation

rules, we can then write η = ησ∂σ. The Lie bracket of diff(X) is

[η(n⃗,µ), η(m⃗,ν)] = iei(n⃗+m⃗)·θ⃗
(
mµ

∂

∂θν
− nν

∂

∂θµ

)
=

∑
(ℓ⃗,σ)

f(n⃗,µ)(m⃗,ν)
(ℓ⃗,σ)η(ℓ⃗,σ). (C.6)

Thus we can read o� the structure constants as

f(n⃗,µ)(m⃗,ν)
(ℓ⃗,σ) = iδℓ⃗n⃗+m⃗ (mµδ

σ
ν − nνδ

σ
µ) , (C.7)

which are antisymmetric in the lowered indices, as expected.

C.2 Gauge transformation

Let us turn to gauge transformations. Take our gauge group as G = SU(2), with a

basis of its Lie algebra su(2), as

Ta = − i

2
τa, (C.8)

where τa are the usual Pauli matrices. With this normalization of our basis, we have

the relations

[Ta, Tb] = ϵab
cTc, (C.9)
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where ϵab
c is the usual antisymmetric tensor with ϵ12

3 = +1.

Now, consider the principal G bundle P → X. We de�ne the group of gauge

transformations G as space of �bre preserving automorphisms of P . Locally, we have

Lie G as the space of maps from X to usual Lie algebra of su(2). Thus, using the

basis for L2(X) from the last subsection, we have a basis for Lie G given by elements

of the form

T(n⃗,a)(θ⃗) = fn⃗(θ⃗)Ta = ein⃗·θ⃗Ta. (C.10)

Thus we can write any gauge transformation ϵ as

ϵ(θ⃗) =
3∑

a=1

∑
n⃗∈Z4

ϵan⃗T(n⃗,a)(θ⃗), (C.11)

with ϵan⃗ ∈ C. As in the case of di�eomorphisms, we will on occasion will conduct the

sum over Fourier modes and write ϵa, so that ϵ = ϵaTa, where, again, we implicitly

sum over a. The structure constants for the Lie algebra of gauge transformations

follow directly from those of the Lie algebra of the gauge group including the e�ect

of the fn⃗s. We have

f(n⃗,a)(m⃗,b)
(ℓ⃗,c) = ϵab

cδℓ⃗n⃗+m⃗. (C.12)

C.3 Di�eomorphisms & Gauge transformations

Next, we want to take the semi-direct product of Diff+(X) and G acting on the space

of adjoint valued di�erential forms on X. To see that we want a semi-direct product,

take g ∈ G and f ∈ Diff+(X) and consider their actions on some ϕ ∈ Ω0(X, ad P ).

We have, by de�nition,

(g ◦ ϕ)(x) = g(x)ϕ(x)g(x)−1 and (f ◦ ϕ)(x) = ϕ(f(x)). (C.13)
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Thus

(f ◦ (g ◦ ϕ))(x) = f ◦ (g(x)ϕ(x)g(x)−1) = g(f(x))ϕ(f(x))g(f(x))−1 (C.14)

and

(g ◦ (f ◦ ϕ))(x) = g ◦ (ϕ(f(x))) = g(x)ϕ(f(x))g(x)−1, (C.15)

which together give

f ◦ (g ◦ f−1) = f ∗(g). (C.16)

This tells us that we do indeed wish to consider G = G ⋊ Diff+(X). In the local Lie

algebra description, this semi-direct product is speci�ed by a Lie algebra homomor-

phism ρ : diff(X) → Der(LieG), where the target is the space of derivations of LieG.

Given (ϵ1, η1), (ϵ2, η2) ∈ LieG ⊕ diff(X), our Lie bracket is given by

[(ϵ1, η1), (ϵ2, η2)] = ([ϵ1, ϵ2] + ρ(η1)(ϵ2)− ρ(η2)(ϵ1), [η1, η2]). (C.17)

The particular homomorphism we are interested in is simply ρ(η) = ησ∂σ, where η

acts as a vector �eld on gauge transformations. We can then write

[[(ϵ1, η1), (ϵ2, η2)][= ([ϵ1, ϵ2] + ησ1∂σϵ2 − ησ2∂σϵ1, [η1, η2]). (C.18)

We would like to identify the structure constants of our Lie bracket. These will be

the same as those of the previous two section along with additional contributions on

the gauge transformation side due to the semi-direct product structure. One �nds

[(T(n⃗,a), η(n⃗′,µ)), (T(m⃗,b), η(m⃗′,ν))] =
∑

(ℓ⃗,c),(ℓ⃗′,µ)

(
ϵab

cδℓ⃗n⃗+m⃗ + imµδ
ℓ⃗
n⃗′+m⃗δ

c
b − inνδ

ℓ⃗
m⃗′+n⃗δ

c
a,
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iδℓ⃗
′

n⃗′+m⃗′(m′
µδ

σ
ν − n′

νδ
σ
µ)
)
(T(ℓ⃗,c), η(ℓ⃗′,σ))

(C.19)

Or, with an unpalatable number of indices,

f{(n⃗,a),(n⃗′,µ)},{(m⃗,b),(m⃗′,ν)}
{(ℓ⃗,c),(ℓ⃗′,σ)} =

(
ϵab

cδℓ⃗n⃗+m⃗ + imµδ
ℓ⃗
n⃗′+m⃗δ

c
b − inνδ

ℓ⃗
m⃗′+n⃗δ

c
a,

iδℓ⃗
′

n⃗′+m⃗′(m′
µδ

σ
ν − n′

νδ
σ
µ)
)

(C.20)

C.4 Weil Algebra

With an explicit understanding of LieG, we now turn to constructing the Weil algebra.

It is de�ned as

W(LieG) = S(LieG ⊕ diff(X))⊗ Λ(LieG ⊕ diff(X)). (C.21)

We can take generators of this algebra as the degree two elements of the symmetric

algebra {φA} and the degree one elements of the exterior algebra {θA}. Here, the index

A is of the form ((n⃗, a), (n⃗′, µ)), where the �rst tuple speci�es a gauge transformation

basis element and the second speci�es a di�eomorphism basis element. In order to

specify a complete set of generators we need not let A run over all such indices, and

instead take the split basis. We de�ne

θ((n⃗,a),(0,0)) = c(n⃗,a) ⊗ 1 φ((n⃗,a),(0,0)) = ϕ(n⃗,a) ⊗ 1 (C.22)

θ((0,0),(n⃗,µ)) = 1⊗ ξ(n⃗,µ) φ((0,0),(n⃗,µ)) = 1⊗ Φ(n⃗,µ) (C.23)
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where (0, 0) indicates zero in the respective direct sum index. To avoid clutter, we

make a rede�nition of notation, so that now A runs over (n⃗, A) with A running

over all spatial indices µ = 1, 2, 3, 4 and gauge indices a = 1, 2, 3. Additionally, we

will frequently suppress identity tensorands. With these indices, we can rewrite the

structure constants of LieG as

fAB
C = f(n⃗,A),(m⃗,B)

(ℓ⃗,C)

= (ϵab
cδaAδ

c
Bδ

C
c + imµδ

µ
Aδ

b
Bδ

C
c δ

c
b − inµδ

a
Aδ

µ
Bδ

C
c δ

c
a + imµδ

µ
Aδ

ν
Bδ

C
σ δ

σ
ν − inµδ

ν
Aδ

µ
Bδ

C
σ δ

σ
ν )δ

ℓ⃗
n⃗+m⃗

(C.24)

Our Weil di�erential act on the generators as

dWθ
A = φA − 1

2
[[θ, θ]]A, dWφ

A = −[[θ, φ]]A. (C.25)

Further, we have the degree -1 di�erential operator IA as

IAθ
B = δBA IAφ

B = 0. (C.26)

and the degree zero Lie derivative LA as

LA = IAdW + dWIA. (C.27)

We wish to identify the action of dW , IA, and LA in this example. Starting with

the Weil di�erential, we have

dWξ
(n⃗,µ) = φ(n⃗,µ) − 1

2
[[θ, θ]](n⃗,µ) = Φ(n⃗,µ) −

∑
AB

fAB
(n⃗,µ)θAθB (C.28)
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= Φ(n⃗,µ) − 1

2
i
∑
m⃗ℓ⃗

∑
νσ

δn⃗
m⃗+ℓ⃗

(ℓνδ
µ
σ −mσδ

µ
ν )θ

(m⃗,ν)θ(ℓ⃗,σ) (C.29)

= Φ(n⃗,µ) − i

2

∑
m⃗σ

((n⃗− m⃗)σξ
(p⃗,σ)ξ(n⃗−m⃗,µ) − m⃗σξ

(m⃗,µ)ξ(n⃗−m⃗,σ)) (C.30)

= Φ(n⃗,µ) −
∑
m⃗σ

ξ(m⃗,σ)i(n⃗− p⃗)σξ
(n⃗−m⃗,µ), (C.31)

where in the last line we have resummed the second term in the penultimate expression

and used the fact that the ξs anticommute. We can also recognize in the above

expression the fact that i(n⃗− m⃗)σ is value of ∂σ on fn⃗−m⃗. Therefore, we sum over n⃗

on both sides and write

dWξ
µ = Φµ − ξσ∂σξ

µ. (C.32)

Similarily, we have

dWΦ(n⃗,µ) = −[[θ, φ]](n⃗,µ) (C.33)

= −
∑
m⃗σ

(i(n⃗− m⃗)σξ
(m⃗,σ)Φ(n⃗−m⃗,µ) − im⃗σξ

(m⃗,µ)Φ(n⃗−m⃗,σ)), (C.34)

and again we can sum over n on both sides to write

dWΦµ = −ξσ∂σΦµ + Φσ∂σξ
µ. (C.35)

Turning to c and ϕ, we must be careful with the extra factors in the structure con-

stants. We �nd

dWc
(n⃗,a) = φ(n⃗,a) − 1

2
[θ, θ](n⃗,a) = ϕ(n⃗,a) − 1

2

∑
AB

fAB
(n⃗,a)θAθB (C.36)

= ϕ(n⃗,a) − 1

2

∑
m⃗bc

ϵbc
ac(m⃗,b)c(n⃗−m⃗,c) − i

2

∑
m⃗σ

mνξ
(n⃗−m⃗,σ)c(m⃗,a) +

i

2

∑
m⃗σ

mσc
(m⃗,a)ξ(n⃗−m⃗,σ)

(C.37)
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= ϕ(n⃗,a) − 1

2

∑
m⃗bc

ϵbc
ac(m⃗,b)c(n⃗−m⃗,c) −

∑
m⃗σ

ξ(n⃗−m⃗,σ)imσc
(m⃗,a). (C.38)

Here we can sum both sides over n and rewrite the result as

dWc
a = ϕa − 1

2
[c, c]a − ξσ∂σc

a. (C.39)

Next, for ϕ we have

dWϕ
(n⃗,a) = −[θ, φ](n⃗,a) (C.40)

= −
∑
p⃗bc

ϵbc
ac(m⃗,b)ϕ(n⃗−m⃗,c) − i

∑
m⃗σ

mσξ
(n⃗−m⃗,σ)ϕ(m⃗,a) + i

∑
m⃗σ

mσc
(m⃗,a)Φ(n⃗−m⃗,σ),

(C.41)

where again we sum over n on both sides to obtain

dWϕ
a = −[c, ϕ]a − ξσ∂σϕ

a + Φσ∂σc. (C.42)

Next, the interior derivatives are easily computed as

I(n⃗,a)c
(m⃗,b) = δm⃗n⃗ δ

b
a, I(n⃗′,µ)ξ

(m⃗,ν) = δm⃗n⃗ δ
µ
µ, (C.43)

I(n⃗,a)ϕ
(m⃗,b) = 0, I(n⃗′,µ)Φ

(m⃗,ν) = 0. (C.44)

Finally we turn to the Lie derivative. Since IA yields either zero or delta functions,

and dW vanishes on delta functions, we only need to compute IAdW on our generators

to understand the action of LA. We have for the gauge indexed operators

L(n⃗,a)c
(m⃗,b) = −

∑
c

ϵac
bc(m⃗−n⃗,c) +

∑
σ

ξ(m⃗−n⃗,σ)inνδ
b
a, L(n⃗,a)ξ

(m⃗,σ) = 0, (C.45)
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L(n⃗,a)ϕ
(m⃗,b) = −

∑
c

ϵac
bϕ(m⃗−n⃗,c) +

∑
σ

inσΦ
(m⃗−n⃗,σ)δba, L(n⃗,a)Φ

(m⃗,ν) = 0, (C.46)

and for the di�eomorphism indexed operators,

L(n⃗,µ)c
(m⃗,b) = −i(m⃗− n⃗)µc

(m⃗−n⃗,b), L(n⃗,µ)ξ
(m⃗,ν) = −i(m⃗− n⃗)µξ

(m⃗−n⃗,ν) +
∑
σ

ξ(m⃗−n⃗,σ)inσδ
ν
µ,

(C.47)

L(n⃗,µ)ϕ
(m⃗,b) = −i(m⃗− n⃗)µϕ

(m⃗−n⃗,b), L(n⃗,µ)Φ
(m⃗,ν) = −i(m⃗− n⃗)µΦ

(m⃗−n⃗,ν) +
∑
σ

Φ(m⃗−n⃗,σ)inσδ
ν
µ.

(C.48)

In order to return this to a more palatable form, let us contract each Lie derivative

by the associated degree one generator, and then conduct the sums over both n⃗ and

m⃗. Allowing ourselves an abusive, but, at this point, well understood notation, we

have

Lcc
b := ca(Lac

b) = −[c, c]b − ξσ∂σc
b, Lcξ

µ := ca(Laξ
µ) = 0, (C.49)

Lcϕ
b := ca(Laϕ

b) = −[c, ϕ]b + Φσ∂σc
b, LcΦ

µ := ca(LaΦ
µ) = 0, (C.50)

and

Lξc
b := ξσ(Lσc

b) = −ξσ∂σcb, Lξξ
µ := ξσ(Lσξ

µ) = −2ξσ∂σξ
µ, (C.51)

Lξϕ
b := ξσ(Lσϕ

b) = −ξσ∂σϕb, LξΦ
µ := ξσ(LσΦ

µ) = −ξσ∂σΦµ + Φσ∂σξ
µ. (C.52)

Note that

θALAφ
B = dWφ

B. (C.53)
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D Variation of Self-Dual Fields

Suppose that we have a (anti-) self-dual �eld ω ∈ Ω2,±(X), such that

ω = ± ⋆ ω, (D.1)

where here and throughout the section the top sign is for self-dual and the lower for

anti self-dual ω. Under a change in the metric g → g + δg, we have ω → ω + δgω. If

we want to maintain the duality condition for the new perturbed metric, we require

δgω = ±δg(⋆ω) = ±(δg⋆)ω ± ⋆(δgω), (D.2)

or, equivalently, that

1

2
(1∓ ⋆)δgω = ±1

2
(δg⋆)ω. (D.3)

Hence, the variation of a (anti-) self-dual �eld will have a contribution from the

variation of the Hodge star. This contribution is the opposite duality of the �eld with

respect to the unperturbed metric.

To �nd an explicit coordinate expression for this contribution, let us turn to the

case at hand, where δgµν = Ψµν . Our conventions take condition (D.1) as

ωµν = ±1

2

√
gϵµνρσg

ρρ′gσσ
′
ωρ′σ′ , (D.4)

where
√
g =

√
det gµν . Our Levi-Civita symbol has no metric dependence, and

ggµµ
′
gνν

′
gρρ

′
gσσ

′
ϵµ′ν′ρ′σ′ = ϵµνρσ, (D.5)
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Further, we will often use

ϵδρστ ϵµνγτ = δδµ(δ
ρ
νδ
σ
γ − δσν δ

ρ
γ)− δρµ(δ

δ
νδ
σ
γ − δσν δ

δ
γ) + δσµ(δ

δ
νδ
ρ
γ − δρνδ

δ
γ). (D.6)

Conventions settled, we need to lift the di�erential of HDiff+(X)(Met(X)) to the total

space of the projected bundle Ω2,±
g (X) over Met(X). Since the projection depends

continuous on the metric, this bundle is non-trivial, unlike the unprojected bundle

Ω2(X). Therefore, the lift of d, denoted d̃ will be a projection connection.46 We have

(d⋆)ω =
1

2
Ψσ

σωµν ∓
√
gϵµνρσΨ

ργωγ
σ. (D.7)

Note that

Ψσ
[µων]σ = −1

2
Ψσ

σωµν ±
1

2

√
gϵµνργΨ

ρσωσ
γ, (D.8)

which follows from the identity

√
gϵµνργA

(ρσ)Bσ
γ = ±AσσBµν ± 2Aσ [µBν]σ, (D.9)

for any symmetric two-tensor A and (anti-) self-dual two-form B. In particular, we

�nd that

(Ψσ
[µων]σ)

∓ = −1

4
Ψσ

σωµν ±
1

2

√
gϵµνργΨ

ρ
σω

σγ, (D.10)

(Ψσ
[µων]σ)

± = −1

4
Ψσ

σωµν , (D.11)

where the raised signs indicate explicit projection to self-dual or anti-dual parts via

the projector 1
2
(1 ± ⋆). Hence, we can satisfy (D.3) by adding −(Ψσ

[µων]σ)
∓ to the

46For more on the importance of projected connections in physics, do not overlook [69]
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variation of ω. All together, we arrive at we have

d̃ωµν = (dωµν)
± − (Ψσ

[µων]σ)
∓, (D.12)

where we have denoted the lift of d to the total space of the bundle Ω2(X) over MetX

with the same symbol, as it is canonical. In our conventions, we assume that all

unconstrained di�erential forms have no metric dependence, and thus dω = 0, and

we end up with

d̃ωµν = −(Ψσ
[µων]σ)

∓. (D.13)

The story is di�erent if we are varying the (anti-) self-dual part of an otherwise

unconstrained two-form �eld. For example, we will encounter the variation of F+
A .

Since FA has both self-dual and anti-self-dual components, we can't immediately

leap to (D.13). Instead, in complete generality, suppose we have an unconstrained

two-form �eld ϖ ∈ Ω2(X). Then

d(ϖ±
µν) = d

(
1

2
ϖµν ±

1

4

√
gϵµνρσϖ

ρσ

)
,

=
1

2
(dϖµν)±

1

4

√
gϵµνρσg

ρρ′gσσ
′
dϖρ′σ′

± 1

2

√
gϵµνρσ

(
1

4
Ψγ

γg
ρρ′gσσ

′ −Ψρρ′gσσ
′
)
ϖρ′σ′

= (dϖ)±µν ±
1

2

√
gϵµνρσ

(
1

4
Ψγ

γ(ϖ
ρσ,+ +ϖρσ,−)−Ψρ

γ(ϖ
γσ,+ +ϖγσ,−)

)
= ∓(Ψσ

[µϖ
+
ν]σ)

− ± (Ψσ
[µϖ

−
ν]σ)

+, (D.14)

where we have again used dϖ = 0. Note that if ϖ∓ = 0, this reproduces (D.13).

Turning to the square d̃2 on ω ∈ Ω2,±
g (X) and d2 on ϖ ∈ Ω2(X), there is an

incredibly important di�erence. Specializing to the self-dual projection of interest,
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we can compute

d2ϖ+
µν =

1

4

√
gϵµνρσΨ

γ
γ

(
1

4
Ψτ

τg
ρρ′gσσ

′ −Ψρρ′gσσ
′
)
ωρ′σ′

+
1

2

√
gϵµνρσ

(
1

2
(∇γΦγ)g

ρρ′gσσ
′ − (∇ρΦρ′ +∇ρ′Φρ)gσσ

′
)
ϖρ′σ′

+
1

2

√
gϵµνρσ

(
1

2
Ψγ

γΨ
ρρ′gσσ

′
+Ψρρ′Ψσσ′

)
ϖρ′σ′

=
1

2

√
gϵµνρσ

(
1

2
(∇γΦ

γ)gρρ
′
gσσ

′ − (∇ρΦρ′ +∇ρ′Φρ)gσσ
′
)
ϖρ′σ′ .

(D.15)

This coincides with the expectation that d2 = LΦ, as the �nal line is the Lie derivative

of the Hodge star operator. On the other hand, we have

d̃2ωµν =
1

2

√
gϵµνρσ

(
1

2
(∇γΦ

γ)gρρ
′
gσσ

′ − (∇ρΦρ′ +∇ρ′Φρ)gσσ
′
)
ωρ′σ′

− 1

2

√
gϵµνρσ

(
1

4
Ψγ

γg
ρρ′gσσ

′ −Ψρρ′gσσ
′
)
d̃ωρ′σ′ .

(D.16)

Here, we encounter a new term in the second line, resulting from the fact that ω ∈

Ω2,+
g (X) as opposed to Ω2(X). In a lengthy but important computation

(d̃2ϖµν)ΨΨ = −1

2

√
gϵµνρσ

(
1

4
Ψγ

γg
ρρ′gσσ

′ −Ψρρ′gσσ
′
)
d̃ωρ′σ′

= −1

2

√
gϵµνρσ

(
1

4
Ψγ

γg
ρρ′gσσ

′ −Ψρρ′gσσ
′
)

×
(
1

2

√
gϵρ′σ′λτ

(
1

4
Ψη

ηg
λλ′gττ

′ −Ψλλ′gττ
′
)
ϖλ′λ′

)
(D.17)

= − 1

16
gϵµνρσϵρ′σ′λτ

(
−gρρ′gσσ′

gττ
′
Ψγ

γΨ
λλ′ + gλλ

′
gσσ

′
gττ

′
Ψη

ηψ
ρρ′
)
ϖλ′τ ′

− 1

4
gϵµνρσϵρ′σ′λτg

σσ′
gττ

′
Ψρρ′Ψλλ′ϖλ′τ ′

=
1

16
ϵµνρσ

(
ϵρσλτΨγ

γΨλ
ηϖηy − ϵησλτΨγ

γΨ
ρ
ηϖλτ − 4ϵησλτΨρ

ηΨλ
γϖγτ

)
= − 1

16
(δρµ(δ

λ
ν δ

τ
η − δτνδ

λ
η )− δλµ(δ

ρ
νδ
τ
η − δτνδ

ρ
η) + δτµ(δ

ρ
νδ
λ
η − δλν δ

ρ
η))
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× (Ψσ
σΨ

η
ρϖλτ + 4Ψη

ρΨλ
σϖστ ) +

1

8
(δλµδ

τ
ν − δτµδ

λ
ν )Ψ

σ
σΨλ

ρϖρτ

= −1

4
(Ψρ

µΨν
σϖσρ −Ψρ

µΨρ
σϖσν −Ψρ

νΨµ
σϖσρ

+Ψρ
ρΨµ

σϖσν +Ψρ
νΨρ

σϖσµ −Ψρ
ρΨν

σϖσµ)

− 1

4
Ψσ

σΨ
ρ
[µϖν]ρ −

1

8
Ψσ

σΨ
ρ
µϖνρ +

1

8
Ψσ

σΨ
ρ
νϖµρ

= −1

2
Ψσ

σΨ
ρ
[µϖν]ρ +

1

2
Ψσ

σΨ
ρ
[µϖν]ρ +

1

2
ΨρσΨρ[µϖν]σ

=
1

2
ΨρσΨρ[µϖν]σ. (D.18)

All told, we �nd

d̃2ωµν =
1

2

√
gϵµνρσ

(
1

2
(∇γΦ

γ)gρρ
′
gσσ

′ − (∇ρΦρ′ +∇ρ′Φρ)gσσ
′
)
χρ′σ′ +

1

2
ΨρσΨρ[µχν]σ.

(D.19)

For our theory, the extra �nal term will be compensated by the ∆H di�erential. We

also recognize it as the curvature of the projection connection, and its existence leads

us to conclude that the self-dual condition is inconsistent with the di�eomorphism

Cartan model alone and requires the combined gauge and di�eomorphism model. In

other words, modules with self-dual �elds cannot be constructed for HDiff+(X)(Met(X))

but can be for HG(M).

It is instructive to see how this leads to the correct algebra for our Cartan model.

We have the very important

Qϖ±
µν = (Qϖ)±µν ∓ (Ψσ

[µϖ
+
ν]σ)

− ± (Ψσ
[µϖ

−
ν]σ)

+. (D.20)

Taking a second action of Q, we obtain

Q2(ϖ±
µν) = (Q2ϖ)±µν ∓ (Ψσ

[µ(Qϖ)+ν]σ)
− ± (Ψσ

[µ(Qϖ)−ν]σ)
+



170

∓Q
(
(Ψσ

[µϖ
+
ν]σ)

− − (Ψσ
[µϖ

−
ν]σ)

+
)
. (D.21)

After a series of Levi-Civita contractions and spliting into self-dual and anti-self-dual

components, the �nal term above can be computed as

Q
(
(Ψσ

[µϖ
+
ν]σ)

− − (Ψσ
[µϖ

−
ν]σ)

+
)
=− (Ψσ

[µ(Qϖ)+ν]σ)
− + (Ψσ

[µ(Qϖ)−ν]σ)
+

+
1

2

√
gϵµναβ(∇αΦσ)ϖσ

β

− 1

2
((∇µΦ

σ)ϖ+
σν + (∇νΦ

σ)ϖ+
µσ)

+
1

2
((∇µΦ

σ)ϖ−
σν + (∇νΦ

σ)ϖ−
µσ).

(D.22)

We then obtain

Q2ϖ±
µν = (Q2ϖ)±µν ∓

1

2

√
gϵµναβ(∇αΦσ)ϖσ

β

± 1

2
((∇µΦ

σ)ϖ+
σν + (∇νΦ

σ)ϖ+
µσ)∓

1

2
((∇µΦ

σ)ϖ−
σν + (∇νΦ

σ)ϖ−
µσ),

= (δϕϖ)±µν + (L(A)
Φ ϖ)±µν ∓

1

2

√
gϵµναβ(∇αΦσ)ϖσ

β

± 1

2
((∇µΦ

σ)ϖ+
σν + (∇νΦ

σ)ϖ+
µσ)∓

1

2
((∇µΦ

σ)ϖ−
σν + (∇νΦ

σ)ϖ−
µσ),

= (δϕϖ
±)µν + (L(A)ϖ±)µν .

(D.23)

We thus see that the extra terms are precisely those that change the (anti-) self-dual

part of the gauge covariant Lie derivative of ϖ to the gauge covariant Lie derivative

of ϖ±.
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E Various Computations

E.1 (Ψσ
[µ(Ψ

ρ
[σχν]]ρ)

−)+ = −1
2Ψ

ρσΨρ[µχν]σ

First, recall that

(Ψσ
[µχν]σ)

− = −1

4
Ψσ

σχµν +
1

2

√
gϵµνρσΨ

ρ
γχγσ (E.1)

so that

(Ψσ
[µ(Ψ

ρ
[σχν]]ρ)

−)+ =

(
Ψσ

[µ

(
−1

4
Ψρ

ρχσ|ν] +
1

2

√
gϵσ|ν]γλΨ

γ
δχ

δλ

))+

=
1

4
Ψρ

ρ(Ψ
σ
[µχν]σ)

+ +
1

2

√
g(ϵσ[ν|γλΨ

σ
µ]Ψ

γ
δχ

δλ)+
(E.2)

The �rst term above vanishes, as

(Ψσ
[µχν]σ)

+ = −1

4
Ψσ

σχµν . (E.3)

Next, we employ the self-duality of χ, and contract anti-symmetric tensors to �nd

1

2

√
g(ϵσ[ν|γλΨ

σ
µ]Ψ

γ
δχ

δλ)+ =
1

4

(
ϵσ[ν|ληϵ

δηγρΨσ
µ]Ψ

λ
δχγρ

)+
,

=
1

2

(
(δσ

δδ[ν
γδλ

ρ − δσ
γδ[ν

δδλ
ρ + δσ

γδ[ν
ρδλ

δ)Ψσ
µ]Ψ

λ
µ]Ψ

λ
δχγρ

)+
,

=
1

2

(
Ψσ

[µΨ
ρ
σχν]ρ −Ψσ

[µΨ
ρ
ν]χσρ +Ψσ

[µΨ
ρ
ρχσ|ν]

)+
.

(E.4)

Above, the second term vanishes due to a cycle of antisymmetric conditions and the

third term vanishes for the same reason the earlier trace term vanished. This leaves
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us with

(Ψσ
[µ(Ψ

ρ
[σχν]]ρ)

−)+ = −1

2
(ΨρσΨσ[µχν]ρ)

+. (E.5)

Here, the self-dual projection on the right hand side is redundant, as, for any anti-

symmetric tensor A[µν], we have

1

2

√
gϵµνληA

σλχησ =
1

4
ϵµνληϵ

σηγδAλσχγδ,

=
1

2
(δσµδ

γ
ν δ

δ
λ − δγµδ

σ
ν δ

δ
λ + δγµδ

δ
νδ
σ
λ)A

λ
σχγδ,

=
1

2
Aλµχνλ −

1

2
Aλνχµλ +

1

2
Aλλχµν ,

= Aσ [µχν]σ.

(E.6)

So we conclude,

(Ψσ
[µ(Ψ

ρ
[σχν]]ρ)

−)+ = −1

2
ΨρσΨρ[µχν]σ. (E.7)

E.2 {d̃,K}H = −{d̃,∆H}H

Here we provide proof of the relation (1.150). We will work rather methodically given

the immense number of terms in the computation. In order to reduce the complexity,

we begin by working in a presentations of our transformations that do not contain

self-dual or anti-self-dual projections. Therefore we can use the various identities of

Appendix D to express d̃χ, d̃H, and KH explictly withouth any self-dual or anti-self-

dual projection operators. We have

d̃χµν = −(Ψσ
[µχν]σ)

−

= −Ψσ
[µχν]σ −

1

4
Ψσ

σχµν , (E.8)
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d̃Hµν = −(Ψσ
[µHν]σ)

−

= −Ψσ
[µHν]σ −

1

4
Ψσ

σHµν , (E.9)

and

KHµν = ΦσDσχµν + ((∇µΦ
σ)χσν + (∇νΦ

σ)χµσ)
+ ,

= ΦσDσχµν +
1

2
(∇µΦ

σ)χσν +
1

2
(∇νΦ

σ)χµσ +
1

2

√
gϵµνλη∇λΦσχ

ση

= ΦσDσχµν +
1

2
(∇µΦ

σ)χσν +
1

2
(∇νΦ

σ)χµσ +
1

4
ϵµνληϵ

σηγδ∇λΦσχγδ

= ΦσDσχµν +
1

2
(∇µΦ

σ)χσν +
1

2
(∇νΦ

σ)χµσ

+
1

2
(δσµδ

γ
ν δ

δ
λ − δγµδ

σ
ν δ

δ
λ + δγµδ

δ
νδ
σ
λ)∇λΦσχγδ

= ΦσDσχµν +
1

2
(∇µΦ

σ)χσν +
1

2
(∇νΦ

σ)χµσ +
1

2
(∇σΦµ)χνσ

− 1

2
(∇σΦν)χµσ +

1

2
(∇σΦ

σ)χµν

= ΦσDσχµν +
1

2
(∇σΦ

σ)χµν −
1

2
(∇µΦ

σ −∇σΦµ)χνσ +
1

2
(∇νΦ

σ −∇σΦν)χµσ.

(E.10)

We then start with �rst side of the relation as

{d̃,∆H}Hµν = d̃

(
−1

2
ΨρσΨρ[µχν]σ

)
+∆H

(
−Ψσ

[µHν]σ −
1

4
Ψσ

σHµν

)
(E.11)

= −1

2
(∇ρΦσ +∇σΦρ)Ψρ[µχν]σ +

1

2
Ψρσ(∇ρΦ[µ +∇[µΦρ)χν]σ

− 1

4
ΨρσΨρµ(−Ψγ

[νχσ]γ −
1

4
Ψγ

γχνσ)

+
1

4
ΨρσΨρν(−Ψγ

[µχσ]γ −
1

4
Ψγ

γχµσ)

− 1

4
Ψσ

µΨ
ργΨρ[νχσ]γ +

1

4
Ψσ

νΨ
ργΨρ[µχσ]γ −

1

8
Ψγ

γΨ
ρσΨρ[µχν]σ

= −1

2
(∇ρΦσ +∇σΦρ)Ψρ[µχν]σ +

1

2
Ψρσ(∇ρΦ[µ +∇[µΦρ)χν]σ
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+
1

16
Ψγ

γΨ
ρσΨρµχνσ −

1

16
Ψγ

γΨ
ρσΨρνχµσ −

1

8
Ψγ

γΨρ[µχν]σ

(E.12)

+
1

4
ΨρσΨρµΨ

γ
[νχσ]γ −

1

4
ΨρσΨρνΨ

γ
[µχσ]γ −

1

4
Ψσ

µΨ
ργΨρ[νχσ]γ

+
1

4
Ψσ

νΨ
ργΨρ[µχσ]γ

= −1

2
(∇ρΦσ +∇σΦρ)Ψρ[µχν]σ +

1

2
Ψρσ(∇ρΦ[µ +∇[µΦρ)χν]σ. (E.13)

Next, we break {d̃,K}Hµν into parts. First, we �nd

(Kd̃)Hµν = K

(
−Ψσ

[µHν]σ −
1

4
Ψσ

σHµν

)
= Ψσ

[µ

(
ΦρDρχν]σ +

1

2
(∇ρΦ

ρ)χν]σ −
1

2
(∇ν]Φ

ρ −∇ρΦν])χσρ

+
1

2
(∇σΦ

ρ −∇ρΦσ)χν]ρ

)
+

1

4
Ψσ

σ

(
ΦρDρχµν +

1

2
(∇ρΦ

ρ)χµν −
1

2
(∇µΦ

ρ −∇ρΦµ)χνρ

+
1

2
(∇νΦ

ρ −∇ρΦν)χµσ

)
(E.14)

For the other direction, we compute the action of d̃ on each individual term of KHµν , .

Additionally, for the �rst time, we will need to vary the metric connection. It satis�es

d̃Γρµν = gρσ(∇(µΨν)σ −
1

2
∇σΨµν), (E.15)

where we use parentheses in our indices to indicate symmetrization. This leads to

d̃(∇µΦ
σ) = gσγ(∇(µΨρ)γ −

1

2
∇γΨµρ)Φ

ρ, (E.16)

d̃(∇σΦµ) = Ψµρ∇σΦ
ρ + (∇(σΨρ)µ −

1

2
∇µΨσρ)Φ

ρ, (E.17)
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d̃(∇σΦ
σ) =

1

2
(∇ρΨ

σ
σ)Φ

ρ. (E.18)

Term by term, we �nd

d̃(ΦσDσχµν) = ΦσDσ

(
−Ψρ

[µχν]ρ −
1

4
Ψρ

ρχµν

)
− Φσ(d̃Γρσµ)χρν − Φσ(d̃Γρσν)χµρ

= −ΦσΨρ
[µDσχν]ρ −

1

4
ΦσΨρ

ρDσχµν − Φσ(∇σΨ
ρ
[µ)χν]ρ

− 1

4
Φσ(∇σΨ

ρ
ρ)χµν − Φρ(gργ(∇(σΨν)γ −

1

2
∇γΨσµ))χρν

− Φσ(gργ(∇(σΨν)γ −
1

2
∇γΨσν))χµρ

= −Ψσ
[µ(Φ

ρDσχν]σ)−
1

4
Ψσ

σ(Φ
ρDρχµν)

− 1

4
(∇ρΨ

σ
σ)Φ

ρχµν − Φσ(∇σΨ
ρ
[µ)χν]ρ

+ Φσ(
1

2
(∇σΨµ

ρ)χνρ +
1

2
(∇µΨσ

ρ)χνρ) +
1

2
Φσ(∇ρΨσµ)χ

ρ
ν

− Φσ(
1

2
(∇σΨν

ρ)χµρ +
1

2
(∇νΨσ

ρ)χµρ)−
1

2
Φσ(∇ρΨσν)χ

ρ
µ

= −Ψσ
[µ(Φ

ρDσχν]σ)−
1

4
Ψσ

σ(Φ
ρDρχµν)−

1

4
(∇ρΨ

σ
σ)Φ

ρχµν

+ (∇[µΨσρ)Φ
σχν]

ρ − (∇ρΨσ[µΦ
σχν]

ρ,

(E.19)

d̃

(
1

2
(∇σΦ

σ)χµν

)
=

1

4
(∇ρΨ

σ
σ)Φ

ρχµν +
1

2
(∇σΦ

σ)(−Ψρ
[µχν]ρ −

1

4
Ψρ

ρχµν)

=
1

4
(∇ρΨ

σ
σ)Φ

ρχµν −
1

2
Ψσ

[µ(∇ρΦ
ρ)χν]σ −

1

4
Ψσ

σ(∇ρΦ
ρ)χµν ,

(E.20)
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d̃

(
−1

2
(∇µΦ

σ)χνσ

)
= −1

2
(gσγ(∇(νΨρ)γ −

1

2
∇γΨµρ)Φ

ρχνσ)

− 1

2
(∇µΦ

σ)(−Ψγ
[νχσ]γ −

1

4
Ψγ

γχνσ)

= −1

4
(∇µΨσρ)Φ

σχν
ρ − 1

4
(∇σΨµρ)Φ

σχν
ρ +

1

4
(∇ρΨµσ)Φ

σχν
ρ

+
1

2
Ψσ

[ν(∇µΦ
ρ)χρ]σ +

1

8
Ψσ

σ(∇µΦ
ρ)χνρ,

(E.21)

d̃

(
1

2
(∇νΦ

σ)χµσ

)
=

1

4
(∇νΨσρ)Φ

σχµ
ρ +

1

4
(∇σΨνρ)Φ

σχµ
ρ − 1

4
(∇ρΨνσ)Φ

σχµ
ρ

− 1

2
Ψσ

[µ(∇νΦ
ρ)χρ]σ −

1

8
Ψσ

σ(∇νΦ
ρ)χµρ,

(E.22)

d̃

(
1

2
(∇σΦµ)χν

σ

)
=

1

2
(Ψµρ∇σΦ

ρ + (∇(σΨρ)µ −
1

2
∇µΨσρ)Φ

ρ)χν
σ − 1

2
Ψσρ(∇σΦµ)χνρ

+
1

2
(∇σΦµ)g

σρ(−Ψγ
[νχρ]γ −

1

4
Ψγ

γχνρ)

=
1

2
Ψσ

µ(∇ρΦσ)χνσ −
1

4
Ψσρ(∇σΦµ)χνρ −

1

4
Ψσ

ν(∇ρΦµ)χ
ρ
σ

− 1

8
Ψσ

σ(∇ρΦµ)χνρ +
1

4
(∇ρΨσµ)Φ

σχν
ρ +

1

4
(∇σΨρµ)Φ

σχν
ρ

− 1

4
(∇µΨσρ)Φ

σχν
ρ.

(E.23)

d̃

(
−1

2
(∇σΦν)χµ

σ

)
= −1

2
Ψσ

ν(∇ρΦσ)χµσ +
1

4
Ψσρ(∇σΦν)χµρ

+
1

4
Ψσ

µ(∇ρΦν)χ
ρ
σ +

1

8
Ψσ

σ(∇ρΦν)χµρ

− 1

4
(∇ρΨσν)Φ

σχµ
ρ − 1

4
(∇σΨρν)Φ

σχµ
ρ

+
1

4
(∇νΨσρ)Φ

σχµ
ρ.

(E.24)
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Collecting (E.21)-(E.24), we �nd

d̃
(
−(∇[µΦ

σ)χν]σ + (∇σΦ[µ)χν]
σ
)
= −(∇[µΨσρ)Φ

σχν]
ρ + (∇ρΨσ[µ)Φ

σχν]
ρ

− 1

4
Ψσ

σ(−
1

2
(∇µΦ

ρ −∇ρΦµ)χνρ

+
1

2
(∇νΦ

ρ −∇ρΦν)χµσ) +
1

2
Ψσ

[µ(∇ν]Φ
ρ)χσρ

− 1

2
Ψσρ(∇[µΦρ)χν]σ +Ψσ

[µ(∇ρΦσ)χν]ρ

− 1

2
Ψσ

[µ(∇ρΦν])χσρ −
1

2
Ψσρ(∇σΦ[µ)χν]ρ.

(E.25)

All the pieces together gives

(d̃K)Hµν = −Ψσ
[µ(Φ

ρDρχν]σ)−
1

4
Ψσ

σ(Φ
ρDρχµν)−

1

2
Ψσ

[µ(∇ρΦ
ρ)χν]σ

− 1

4
Ψσ

σ((∇ρΦ
ρ)χµν −

1

2
(∇µΦ

ρ −∇ρΦµ)χνρ +
1

2
(∇νΦ

ρ −∇ρΦν)χµσ)

+ Ψσ
[µ(

1

2
(∇ν]Φ

ρ)χσρ + (∇ρΦσ)χν]ρ −
1

2
(∇ρΦν])χσρ)

− 1

2
Ψσρ((∇[µΦρ) + (∇ρΦ[µ))χν]σ.

(E.26)

This �nally gives us

{d̃,K} = −1

2
Ψσρ(∇[µΦρ +∇ρΦ[µ)χν]σ +

1

2
Ψσ

[µ(∇ρΦσ +∇σΦ
ρ)χν]ρ. (E.27)

Thus, comparing this to (E.13), we see that, indeed

{d̃,K}H = −{d̃,∆H}H. (E.28)
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F Exact + Non-exact Splitting of
√
gCIR−

For the purposes of understanding the action of superconformal tensor calculus, we

can write the unbarred half the St as a entirely non-exact part plus the exact part.

This is given by

St
∣∣
anti-chiral

= Q(V+ A) + C, (F.1)

where is V of (2.7) A of (2.70) and C is (2.3.2). Explicitly written in the �t� �elds,

we have

V =

∫
X
d4x

√
g

[
−1

2
τ(F t,+

µν +Dt
µν)χ

µν − 2τψt
µ∇µa+

∂τ

∂a
ψt
µψ

t
νχ

µν − τ(∇[µΦν])aχ
µν

−2τΦµχµν∇νa+ 2
∂τ

∂a
Φσψt

µχσνχ
µν +

∂τ

∂a
ΦρΦσχσµχρνχ

µν

]
(F.2)

A =

∫
X
d4x

√
g

[
2τΦµχµν∇νa+

∂τ

∂a
Φρχρσχ

σµψt
µ −

2

3

∂τ

∂a
ΦρΦσχρµχσνχ

µν

]
(F.3)

and

C =

∫
X
d4x

[
τ

4
ϵµναβF t

µνF
t
αβ −

1

2

∂τ

∂a
ϵµναβψt

µψ
t
νF

t
αβ +

1

12

∂2τ

∂a2
ϵµναβψt

µψ
t
νψ

t
αψ

t
β

+
τ

2
ϵµναβF t

µν∇[α(Φβ]a) + τϵµναβ∇[µ(Φν]a)∇[α(Φβ]a)

−∂τ
∂a
ϵµναβΦσχσµψ

t
νF

t
αβ − 2

∂τ

∂a
ϵµναβΦσχσµψ

t
ν∇[α(Φβ]a)

−1

2

∂τ

∂a
ϵµναβΦρΦσχρµχσνF

t
αβ +

∂τ

∂a
ϵµναβΦρΦσχρµχσν∇[α(Φβ]a)

+
1

3

∂2τ

∂a2
ϵµναβΦσχσµψ

t
µψ

t
αψ

t
β +

1

2

∂2τ

∂a2
ϵµναβΦσχσµΦ

ρχρνψ
t
αψ

t
β

+
1

3

∂2τ

∂a2
ϵµναβΦσχσµΦ

ρχρνΦ
γχγαψ

t
β

]
(F.4)
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There are simpli�cations upon adding V and A. We �nd

V+ A =

∫
X
d4x

√
g

[
−1

2
τ(F t,+

µν +Dt
µν)χ

µν − 2τψt
µ∇µa+

∂τ

∂a
ψt
µψ

t
νχ

µν

−τ(∇[µΦν])aχ
µν − ∂τ

∂a
Φρχρσχ

σµψt
µ +

1

3

∂τ

∂a
ΦρΦσχρµχσνχ

µν

]
(F.5)
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