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At its heart, this dissertation investigates the relationship between two of physics’
most important symmetries, diffeomorphisms and gauge transformations. Directed
by the study of the metric dependence of solutions to the instanton equation of
Yang-Mills theory on a smooth four manifold X, we construct a model of equivariant
cohomology of the space of gauge connections A and metrics Met(X) with respect to
the semi-direct product of gauge transformations G and diffeomorphisms Diff, (X).
Generalizing topologically twisted A/ = 2 super Yang Mills theory, we use our model
to present a new set of transformation laws and action which allow for the construction
of new diffeomorphism invariants of X associated to families of metrics. These are,
conjecturally, the fabled family Donaldson invariants. Surprisingly, we also identify
our model as a subsector of N/ = 2 twisted supergravity on a background with only
certain components of the gravitino activated. In addition, we provide perspective on

future directions for these developments.
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Introduction

Physics is the study of change. Typically, changes are measured through rates along
a world line, leading to our familiar notions of velocity, acceleration, jerks, snap,
crackle, pop, and all that. Mathematically, these rates require us to take a series
of derivatives with respect to a time variable along the world line. On a manifold,
the proper space to allow for a curved or topologically non-trivial universe, infinite
iterations of derivatives in any combination of directions require the transition func-
tions between charts to be likewise infinitely differentiable. This leads us to consider
smooth manifolds as candidates for the universe of a physical theory.

Naively, given a manifold X where the transition functions between charts are
merely continuous, one might expect that, if available, a choice of smooth structure
would be unique up to diffeomorphism. Shockingly, this is not always the case.
Indeed, in 1956, John W. Milnor constructed a smooth structure on the seven sphere
S” which was homeomorphic, but not diffeomorphic to the standard Euclidean 7-
sphere [67]. It was further shown that there were a total of 28 non-equivalent smooth
structures on the homotopic S7 [48]. Such smooth manifolds which have a smooth
structure different from the standard are called exotic. In dimensions less than four,
there are no exotic manifolds and in dimensions greater than four, there are at most
a finite number . In four dimensions, where we seemingly live, things get wild.

For n # 4, the manifold R™ has exactly one smooth structure, namely the one
specified by the traditional flat Euclidean metric |79]|. In an incredible twist to the
story, for R* there are an uncountable number of exotic smooth structures [8, 39, 66].
Further, research into the possible smooth structures on closed, simply-connected,
smoothable manifolds seems to suggest that the presence of exotic structures is the

norm, not the exception [75]. For the case of the four sphere S this question,



namely, “Does an exotic four sphere exist?” is the final open piece of the generalized
Poincaré conjecture, the so called “last man standing" among the problems of classical
geometric topology [33]. Indeed, in stark contrast to every other dimension, there is no
known classification of smooth structures for even a single smoothable four manifold.

Despite the unruliness of four manifolds, some features have been tamed. In fact,
it is nearly settled as to which simply-connected closed four manifolds allow for a
smooth structure |23, 36, 41].! This progress was in large part due to the incredible
work of Simon K. Donaldson, when, in 1983, he introduced the eponymous Donaldson
polynomial invariants. Letting X be a closed, oriented, smooth four manifold, we can
write the generating function for the polynomials of X as

phs" o

ZD[g7p7 S] - Eﬁ D> (01>
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where ¢ is a metric on X and p and s are formal variables associated to a point
and surface in X respectively, thus, for a fixed degree, defining a polynomial on
Hy(X) @ Hy(X). Here the %" are rational numbers which are independent of the
metric on X, so long as there is a sufficiently large vector space of self-dual two form,
that is, for by (X) > 2. Hence, if computed, these invariants provide a potential
method of distinguishing between different smooth structures.

But what is it that the Donaldson polynomials are actually computing? Before
we answer this question, let us take a step back to understand topological invariants
in general. If two manifolds can be deformed into each other, the invariants of each
manifold will be the same, as is often parlayed into the image of a confused topologicist
unsure at breakfast whether to drink out of a donut or take a bite out of his coffee

cup; to them, the two objects are indistinguishable on account of having only one

!'We make this statement precise in Section 0.1.2 below.



hole. Following this intuition, the topological invariants of a manifold should count
something, such as holes. Even the dimension of a manifold is a topological invariant,
as, no matter how hard one tries, no one has or will ever be able to deform a manifold
into a higher dimension. If one leaves their lower dimensional manifolds behind and
makes it into these higher dimensions, you’ll find higher dimensional holes, such as the
one inside of a sphere. Unfortunately just counting holes is insufficient to distinguish
two smooth manifolds i.e. the number of holes is not a complete invariant. Indeed,
both S7 and an exotic $7 each have only one “seven dimensional hole,” but they are
not the same smooth manifolds.

Thankfully there are myriad other topological invariants. Some are Zo-valued and
only give a “yes” or a “no,” such as orientability, which measures a manifold’s ability
to have a well-defined notion of handedness. On an un-orientable surface, such as the
Mébius strip, a left-handed person is just a right-handed person who needs to go for
a walk. Similarly, a theory of physics on such a surface would not allow for chiral
particles, which leads us to a result: Because we find chiral particles in our universe,
we must live on a oriented manifold. Here, an observation in a physical theory has
just told us something about the world it lives in.

Extrapolating this approach, we are led to ask, what can a physical theory teach us
about the topology of the underlying spacetime? The answer, it turns out, is precisely
the one we initially sought. One of our more sophisticated theories is the Yang-Mills
theory, which is the overarching field theory of both quantum electrodynamics and
quantum chromodynamics and forms the basis of our understanding of the Standard
Model. The classical solutions to its equations of motion generalize the classical
Maxwell equations and its quantum field theory gives all the beautiful machinery of
the strong and electroweak forces of nature. Quantum mechanically, there is another

type of solution, namely, a instanton. Instantons are topologically non-trivial field



configurations that are localized in both space and time and minimize the action of
the Yang-Mills theory . This is to be juxtaposed with the notion of a particle which
is only localized in space, and, as an object in spacetime, is a worldline. In constrast,
to an observer, instantons are blips that last for only an instant. Moreover, Wick
rotating over to Euclidean space, the number of possible instanton solutions depends
on the manifold X. This leads us to our answer, the Donaldson polynomial invariants
are, for a fixed number of instantons, counting the number of ways these instantons
can all be put on the manifold X!

Donaldson’s work was motivated by physics, but surely our physical theory of
Yang-Mills on a manifold X will depend on the metric? How can we build a theory
which is “topological” and ensure that when we ask the physics to count the instanton
solutions it won’t get stuck on a choice of metric? In 1988, Edward Witten, in a deft
maneuver guided by the intuition of a physicist, discovered a method to “twist” the
fields of the four dimensional N = 2 supersymmetric Yang Mills theory with gauge
group G and arrived at the notion of a cohomologically topological field theory [85].
This theory is equipped with a differential Q that squares to zero on all gauge invariant
functionals of the fields. With this differential, we can write action of the theory Syy

as

Suv = Q(VU\/) + ﬂ / TrF4 A Fy, (02)
167 Jx

where Vv is a functional of the twisted vector multiplet fields, F'4 is Yang Mills field
strength, and 7; is the complex coupling constant. Note that this is the sum of a
Q-exact term and a topological term. Further, the stress energy tensor T),,, defined

nvs

as

1
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for an infinitesimal change g — ¢g"” 4+ dg"”, can be written as
UV _ AAUV
T, =QA, . (0.4)
We can then define the partition function of this theory as

Zwlg) = / [dVM]e™5vv, (0.5)

where we have conducted the path integral over the twisted vector multiplet fields.
Noting that O originates from the supersymmetry of the untwisted theory, we see

that?

1
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(0.6)
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X

Therefore, the partition function is formally independent of the choice of metric on
X, that is, the theory is topological!

Moreover, the theory is equipped with O-closed, gauge invariant observables. On a
simply-connected, closed manifold, we have two observables of note, the 0-observables
OO (py) associated to a point py € X and the 2-observables O (%) associated to a
closed surface ¥ C X. These choices, pg and 32, only depends on the homology class,

up to Q-exact terms, which themselves decouple from the theory [52]. We can write

2We point the eager reader to (0.118)-(0.123) for a more careful treatment of this important
result.



the expectation value of the generating function of these observables as

Zwlg,p,s] = / [AVM]er@” o) +50) (X) o =Suy

The beauty of this theory is that, up to an overall constant prefactor, we have

Zplg,p, s] = Zw[g, p, s]. (0.8)

Henceforth, we shall then only refer to the unified Donaldson- Witten partition func-
tion Zpw.

Were this the only benefit of the physics interpretation, one would be excused
for marvelling and moving on, but there’s more! In 1994, together with Nathan
Seiberg, Witten provided an exact low energy effective action for the untwisted N' =
2 supersymmetric Yang Mills theory for SU(2) |76, 77|, allowing for approximate
computations of correlation functions. Here, the physics is mapped from the high
energy UV theory to the low energy IR theory, where the dynamics are comprised
of fluctuations about the quantum vacua. In the IR, the gauge symmetry breaks
to U(1), though at certain points in the moduli space of quantum vacua, massless
particles enter the story. Turning to the twisted story, Zpw is independent of the
metric for choices of X with b > 1, and thus one can scale to long length scales,
or, correspondingly, low energy limits. Since the twisted theory is topological, this
mapping is not just an approximation, but an exact correspondence.

Led by the tools of physicists, we then arrive at the outcome that the Donaldson-
Witten invariants can be computed as an integral over the moduli space of quantum

vacua for the U(1) twisted Seiberg-Witten theory. Such vacua are parameterized by



the expectation value of the O (py) observable of the theory, which is denoted wu.
Further, in 1997, Gregory W. Moore, with Witten, conducted the explicit integral

over the u-plane of these vacua, leading to the relation

Zow = Y Ziw +Za, (0.9)

u==1

where Zgw are contributions from the points on the u-plane where there are monopole
solutions and Z, is the so-called u-plane integral [71]. For b5 (X) > 1, they showed
that Z, = 0, and thus the Donaldson-Witten invariants can be written entirely in
terms of monopole solutions, greatly simplifying their computation. Meanwhile, at
by (X) = 1, each of the above terms is only piecewise constant over the space of
metrics, leading to the phenomenon of wall crossing, where the values jump across
certain domain walls.

This is only the tip of the iceberg, as after this work of exchanging the messy “non-
abelianness” of Donaldson theory for the tractable abelian nature of Seiberg-Witten
theory, many of the old theorems of four manifold theory were given new, simpler
proofs and the connection further inspired entirely new directions of study [25, 70].
This exchange between mathematicians and physicists is rightly heralded as one of
the greatest success stories in the burgeoning field of physical mathematics |5, 68|
This field is characterized by its use of the techniques and intuitions of quantum field
theory and its cousins to pose and prove concrete problems in mathematics. The goal
of this thesis is to continue this tradition.

An early remark by Donaldson [24] saw fit to consider a further generalization
of his invariants, namely to generalize them to higher degree forms on the classify-
ing space of orientation-preserving diffeomorphisms, BDiff, (X). To understand this,

consider Zpw as function over the space of metrics on X, denoted Met(X), which



is, for b3 (X) > 1, invariant under orientation preserving diffeomorphisms. Hence,
putting aside for the moment issues of singularities, we have Zpw as a function on
the space Met(X)/Diff  (X), which contains the same topological data as BDiff (X).
This immediately introduces the notion of considering higher degree differential forms
on Met(X)/Diff . (X), and, along with an appropriate differential, the cohomology
H*(Met(X)/Diff , (X)). Then, integrating such an n-forms over an n-paramter family
of metrics in Met(X) would yield family Donaldson invariants.

Returning to those issues of singularities in the quotient space “Met(X) /Diff , (X),”
we are brought to the mathematical theory of equivariant cohomology, which is de-
signed precisely to tackle the cohomology of manifolds with a (not necessarily free)
group action. As we will explore in detail, the original densities of the Donaldson-
Witten invariants are themselves elements of equivariant cohomology on the space of
gauge connections A with respect to the group of gauge transformations G, that is,
elements of Hg(A), where Q plays the role of the differential®. In order to explore our
family Donaldson invariants, we must extend this model of equivariant cohomology
to the product space

M = A x Met(X) (0.10)

with the action of the group
G = G x Diff .(X). (0.11)

Then, denoting the differential for the cohomology Hg(M) by Q,* we will extend the

original Q-closed action Syy to a Q-closed action Syy. The generating function for

3With the addition of two modules over Hg(A), or contractible pairs, which we will discuss in
due time.

4For obvious reasons, will never refer to the rational numbers as Q in this work.



our family Donaldson invariants is then defined as
Z[g, V¥, ®] = /[d\/M]eSUV. (0.12)

Here, g € Met(X), ¥ € Q!(Met(X)), and ® € Vect(X) are the generating fields for the
complex of Hp, (x)(Met(X)), which is equipped with the differential d. From this per-
spective, integrating over the vector multiplet fields is equivalent to projecting down
from our total complex of the Hg (M) model to the base complex of Hpir, (x)(Met(X)).

Since QSyy = 0, a simple chain map argument reveals that
dZ[g, ¥, ®] =0, (0.13)

Moreover, expanding our generating function in degrees, we have

o0

Z[g, v, @] = > 7" (0.14)

m=0

and due to the fact that d is homogeneous of degree one, we find
dz" = o, (0.15)

for all n. Here, each Z[" is degree n element of Hpifr, (x)(Met(X)), and thus we
can integrate it over an n-parameter family of metrics to obtain the fabled family
Donaldson invariants. Of course, by construction Z%) = Zpw|g], where the right hand
side is the original Donaldson-Witten invariants without the insertion of observables.

Surprisingly, we can also obtain these invariants from a physically motivated di-
rection. To do so, consider four dimensional N = 2 Euclidean supergravity, as in [17].

In joint work with Moore, Ro¢ek, and Saxena to appear |12|, we will show that one
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is able to first twist and truncate this theory and then by restricting to a symmetric
gravitino background arrive at a consistent theory of twisted supergravity. Moreover,
the fields and the transformations laws of this theory exactly coincide with those of
our model of Hg(M) and its modules! Further, using the chiral density formula and
superconformal tensor calculus in supergravity, one obtains an action St., which is
equal to Syy up to a Q-exact term!

Hence, herein we hope to open the door to an exciting new chapter in the con-
tinued dialogue between physics and mathematics in our quest to understand four
manifolds. With this view ahead, we also provide our initial investigations into the
inclusion of family observables. Finally, we also provide a IR formulation of this entire
story, so that future work might repeat the analysis of Moore and Witten in [71]| and
understand the expected wall-crossing for these invariants on manifolds with by > 1.

The structure of this work is as follows. In order to generalize, we must first
settle that which is to be extended, so we begin with Section 0, where we conduct
a crash course in basic four manifold theory, then move to a likewise concise review
of N' = 2 supersymmetry in four dimensions. We conclude the preliminaries by
conducting Witten’s twist and reconstruct the Donaldson-Witten invariants, with
an emphasis on equivariant cohomology and the Mathai-Quillen formalism. Section
1 is the heart of the paper, wherein we carefully construct the Cartan model of
equivariant cohomology for Hg(M), include two modules, and then, in a lengthy
excursus, show that this model is equivalent to truncated twisted supergravity on a
symmetric gravitino background. Section 2 presents our generalized construction of
both a UV action Syy and a IR action S;g. We further take another excursus into
twisted supergravity, and present its construction of the action and then show that
it is equal to our own up to a Q-exact term. Section 3 presents the hero of our story,

the family invariants. After some light exploration in their features, we then extend
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our gaze to the horizon, where in Section 4 we present preliminary investigations into
the inclusion of observables, the computation of our invariants, and the prospects of
wall-crossing phenomenon. We then conclude.

We will assume familiarity with certain aspects of differential topology, algebraic
topology, as well as quantum field theory.® For the truly uninitiated, we point to
the beautiful book by Alexandru Scorpan [75] for a mathematical approach and the
likewise wonderful (and shorter!) text of Jose Labastida and Marcos Marifo 53] for
a more physical approach. We would also be unduly remiss to not mention the expert

reviews [10] and [70].

5To the level that, math-wise, every item in the bulleted list below is understood, and physics-
wise, the discussion in the introduction about Seiberg-Witten theory was understood. We will try
to be as curt as possible without truly losing any reader who is at the position the author was when
they began their graduate studies.
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0 Foundations

Our story features a cast of main characters. In the leading role, we always take X to
be a closed, oriented, smooth four manifold. In addition, we hold here for reference,

the other main players:
e (G : Gauge group, i.e. a compact semisimple Lie group.
e g : Lie algebra of G.
e P : Principal G-bundle P — X.

e A : Space of G-connections on P.

G : Group of gauge transformations, i.e. the group of fibre preserving automor-

phisms of P.

LieG : Lie algebra of G.

e Met(X) : Space of Riemannian metrics on X.

Diff, (X) : Lie group of orientation-preserving diffeomorphisms of X.

diff(X) : Lie algebra of Diff . (X).
e M= A x Met(X).0

o G =G x Diff . (X).

5For ease of notation and not to be confused with the Monster group.



13

0.1 Four Manifold Theory
0.1.1 Basics

A topological four manifold is a topological space” X which is locally R*, that is, for
every point pg € X there is an open neighborhood U C X of py and a homeomorphism
(a continuous map which has a continous inverse) oy : U — ¢y (U) C R% These
maps are called charts, though often the definition is extended to refer to the domains
as well, and often written (U, ¢y). Given two non-disjoint neighborhoods U and V/,
we have a homeomorphism from ¢ (UNV) to oy (UNV) given by oy opp', which we
call the transition function. We consider two topological manifolds to be equivalent
as topological manifolds if there exists a homeomorphism between them. Further,
we say a topological four manifold is closed if it both compact and has no boundary.
Finally, a closed topological four manifold is said to be orientable if its top homology
H,(X,Z) is isomorphic to the integers Z. Here a choice of generator is an orientation,
which gives one an oriented manifold. We restrict our entire discussion to connected,
closed, oriented manifolds.

A smooth four manifold is a topological four manifold with a collection of charts
so that every transition function is smooth (differentiable to all orders). We say a
topological manifold X is smoothable if there is a selection of its charts which cover
X such that every transition function is smooth. We call such a selection a smooth
structure. 'We consider two smooth manifolds to have equivalent smooth structure
is there exists a diffeomorphism (a smooth function which has a smooth inverse)
between them.® Note that these definitions allow for two smooth manifolds X and Y

to be equivalent as topological manifolds, but different as smooth manifolds.

"Which needs to be both separable and Hausdorff, which to a physicists need only mean that it
isn’t a pathological nightmare.

8Note that a smooth homeomorphism need not be a diffeomorphism. For example consider
f:R — R given by f(x) = 23, whose inverse is not differentiable at 0.
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Figure 1: If {¢} and {¢} are two independent collections of charts such that all
transition functions {py o p;'} and {¢y o ¢;'} are smooth, then they are both
individually smooth structures on X. If every {¢y o '}, as in the dotted map, is
smooth, then the two smooth structures are equivalent. If a single one is not, then
the two smooth structures are different.

Following these definitions, one is immediately presented with the question of

classification. The question comes in three parts, namely
e First: What is the classification of topological four manifolds?

e Second: What are the conditions for a topological four manifold to be smooth-

able?

e Third: What is the classification of smooth structures on smoothable four

manifolds?

The first question is, in general intractable, as given any finitely presented group
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H, one can construct a topological four manifold X with its fundamental group
m(X) = H. The question of distinguishing between two finitely presented groups
is known as the word problem, and it’s unfortunately undecidable [74]. So much
for generality. Thankfully, once one restricts to simply-connected topological four

manifolds, the classification has been settled. Thus we turn to the intersection form.

0.1.2 Intersection Form

The most basic topological invariants of any manifold are its homology groups,
H,(X,Z), and cohomology groups H"(X,Z). They are abelian groups and the rank
of the nth homology group is called the nth Betti number of X, denoted by b;. More-
over, when X is simply-connected, both its homology and cohomology groups are
free, so at this point we all but turn our backs to non-simply-connected manifolds.

We can then define the intersection form QQx as the symmetric bilinear form

Qx : H*(X,Z) x H*(X,7) — 7, (0.1)

defined as the cup product between 2-cocycles. Unfortunately, cup products are con-
fusing, so let’s recall Poincaré duality. Since the manifolds we consider are oriented,

we have the canonical isomorphism

H,(X,7)~ H" (X, 7). (0.2)

In four dimensions, this gives us an isomorphism between H?(X,Z) and Ho(X,Z),
which leds to a geometric picture of Qx. If S, and Sp in Hy(X,Z) are representatives

duals to 2-cocycles a and [, then the intersection form can defined as the signed
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intersection number of the surfaces S, and Sjg,

Qx(a,B) = Sa - Sp. (0.3)

In another salute to Poincaré duality, () x is unimodular, that is, it has det(Qx) = 1.
Therefore @) x is a symmetric integral unimodular bilinear form. It is important to
stress that we are working over the integers, and thus a change of basis is an element
of GLy, (X, Z), not GL,,(X,R). For this reason, Qx is an interesting invariant.

The intersection form itself has a number of algebraic invariants. First, its rank
is simply bo(X). Next, we can diagonalize the matrix )y over the real numbers R
and count the number of positive and number eigenvalues. We call them b5 and b,

respectively. The signature of (Qx is then defined as

sign Qx = by — b, . (0.4)

We say Qx is definite if either b) or b, are zero, and indefinite otherwise. Lastly, we
have the parity, which is said to be even if, for all classes o € H*(X,Z), Qx(a, ) €
27, and odd otherwise.

Turning to the classification of possible intersection forms, there has been won-
derful success for the indefinite case. Here we have Serre’s Classification Theorem,
which tells us that two indefinite integral symmetric bilinear unimodular forms are
isomorphic if they have the same rank, signature, and parity [78]. Concretely, this

means that if ()x is indefinite and odd, then it is isomorphic to

m[+1] & n[-1]. (0.5)
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and if it is even, then it is isomorphic to

+mEs ®nH, (0.6)

where m,n € Z* and

2 -1 0 0 O 0O 0 O
-1 2 -1 0 0 O 0 O
o -1 2 -1 0 0 0 O
B, — o 0 -1 2 -1 0 0 O Cand H— 01 . 0.7)
o o0 o0 -1 2 -1 0 -1 10
o o o o0 -1 2 -1 0
o 0 o o 0 -1 2 0
o0 0 0 -1 0 0 2]

Definite forms on the other hand are far more complicated. In the even case, van
der Blij’s lemma indicates that the rank must be a multiple of 8 [83]. At rank 8, we
have just Eg, two at rank 16, the 24 Niemeier lattices at rank 24, but then suddenly
more than eighty million at rank 32. The landscape is even less clear on the odd side.
Thankfully, for every fixed rank, there is only a finite number of integral symmetric
bilinear unimodular forms up to isomorphism.

Having some semblance of algebraically-possible intersection forms, one asks which
ones are realized as the intersection forms for topological four manifolds. The answer,
it turns out, is all of them. More so we have Freedman’s Classification Theorem
[32, 34]. It states that, for any integral symmetric unimodular form @, there is a
closed simply-connected topological four manifold that has @) as its intersection form.

This further divides into two cases:
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o If () is even, then there is exactly one topological four manifold up to homeo-

morphism.

e If () is odd, then there are exactly two such topological manifolds up to home-

omorphism, at least one of which is not smoothable.

Hence, we have answered the first of our original three questions. Let us now turn to

smooth topological four manifolds.

0.1.3 Donaldson Invariants

Let X be a closed, oriented, smooth four manifold. We will also continue to restrict
to the simply-connected case. With a smooth structure in hand, we can now speak
of the tangent bundle TX, the cotangent bundle T*X, and the space of differential
forms Q*(X). Further, with the exterior derivative d, we can speak of the de Rham
cohomology Hjji (X,R) of X, which is taken over the real number R. In our case,
where there is no torsion in H*(X,Z), we will view H3,(X,Z) as an integral lattice
inside of H?(X,R). With this perspective, we can write the intersection form on two

2-cocycles, represented by two-forms, as

Qule, B) = / anB. (0.8)

X

A fundamental result of differential geometry is that every smooth manifold has
a Riemannian metric g [55]. Here, g assigns to each point p € X a positive-definite
inner product on the tangent space T,X. Note that a single smooth manifold X can
have many different metrics, and we denote the space of all possible ones, namely the
moduli space of metrics on X, by Met(X). This space is topologically uninteresting

on its own right, since it is contractible.’

9To see this, take any two gog,g1 € Met(X) and consider the path g, = ngo + (1 — n)g; for
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With a metric (and an orientation), we can define the Hodge star operator x. In
four dimensions, this is a map * : Q"(X) — Q* (X)) which squares to one, hence
has eigenvalues 4-1. In our conventions, for w € Q%(X), in a coordinate basis, we can

write

1 / /
*Wpy = Eﬁeuupagpp gJU Wo'oy (09)

where we write /g for the square-root of the determinant of g. Our Levi-Cevita
symbol holds no metric dependence, but we can see the Hodge star’s explicit de-
pendence on the metric. Since * is an involution on Q?(X) there is a splitting into
self-dual two-forms Q(X) with eigenvalues +1 and anti-self-dual two forms Q~ (X)
with eigenvalues —1. Given any two-form w, we will use an index £ to denote its

self-dual or anti-self-dual parts respectively. Thus we have

:t 1

]. / O.O./
W = 5@0#,, + Z\/Eew,pggpp G977 Wy (0.10)

This splitting descends in de Rham cohomology to a splitting of H?(X,R) and

H?(X,R). Thus, considering the definition of integration over differential forms, we

have
1
Qx(w,wh) = /Xw+ ANwt = §/Xd4x\/§w:l,wj‘_” > 0, (0.11)
and
1
OQx(w ,w )= [ w Aw™ =—= [ d'zy/gw_ " < 0. 0.12
2 w
X X
Further, w™ A w™ = 0. Hence, we see that A2 (X,R) is a maximal positive definite

subspace for Qx and H?(X,R) is a maximal negative definite subspace for Qx. This

n € [0,1]. Since each g, is still a positive-definite inner product, it readily follows that Met(X) can
be contracted down to a single point.
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means that we have the identification
b;(X) = dim Hi(X,]R) and b, (X) = dim HE(X, R). (0.13)

With a smooth structure, we can also delve into gauge theory, which studies gauge
connections on various types of fibre bundles, in particular principal bundles.'’Let
G be our gauge group, namely a compact Lie group (typically G = SU(2) or SO(3))
with Lie algebra g. We then take P — X to be a principal G-bundle, with a space
of G-connections A(P). Here A is an affine space, where the difference of two of its
elements is in Q' (X, ad P), that is, a one form on X with values in the adjoint bundle.

Given a connection A € A(P), we can define a gauge covariant derivative'!

Djy=d+ A, (0.14)

and compute its curvature, or, in physics parleance, its field strength, as

Fy=dA+ AN A, (0.15)

and, in local coordinates, as

F =0,A, — 0,A, + [A,, A,). (0.16)

Here, the brackets are the Lie brackets of g. In addition, we have the group of fibre

preserving automorphisms of P, which we call the group of gauge transformations G.

0For in depth reviews, specifically in four dimensions, we point the reader to the texts [26, 30, 35].

' \Mathematicians will often reserve the term connection for the differential D4 and call A a local
connection 1-form. This is done since A transforms inhomogenously under gauge transformations,
while D4 transforms covariantly. We follow the nomenclature of physicists.
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For € € LieG, we have the left-action on the connection and curvature as

0A=1[e,A] —de and 0.Fa = [e, Fal. (0.17)

We can fully classify principal SU(2)-bundles by their second Chern class k = c2(P) €

Z. Using Chern-Weil theory, this integer can be written as the integral

1

b= 1672

/H&A&, (0.18)
X

where the trace is normalized so that each possible integer k can be realized. We
shall refer to the number £k as the instanton number. On the other hand, one can also

consider the integral

1 1
SYM = 5 / TrFqg ANxFy = Zl / d4ZL‘\/§TI‘[Fw,F“V], (019)
X X

which we call the Yang-Mills functional or Yang-Mills action. Note, thanks to the
trace, that both Syy and k are of course invariant under the action of G.

It is natural to consider the minimization of Syy. To do so, note that we can

write
1
Sym = 5/ [TrFy ANFf —TeFy ANFL (0.20)
X
and also
1
k=— / [TeFy ANFy +TeF; AF]. (0.21)
1671—2 X

Hence, for k = 0, Syym has absolute minima on flat connections F4 = 0, for k£ < 0,
on connections which satisfy F'; = 0, and for k¥ > 0, on connections with F; = 0.
The difference between the cases of £ < 0 and k£ > 0 is simply due to a choice of

orientation, so we restrict our attention to k > 0. Thus we are interested in solutions
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to

Fi =0, (0.22)

which is knwon as the instanton equation. Note that F'f = 0 implies that xFy = —F4,
so that solutions are the so-called anti-self-dual connections.!? Further, we only care
about connections up to equivalence under gauge transformations, so we need only
consider equivalence classes of connections [A] € A/G. Thus, the space of interest is

the instanton moduli space
My ={[A] € A/G | F{ =0}, (0.23)

where we specify a fixed metric g, due to the Hodge star’s dependence on a met-
ric. My, is, in general, non-compact, and due to the quotient by G, also singular.
Thankfully, for b3 > 0 and a generic metric, the moduli space for G = SU(2) is a

finite-dimensional orientable smooth manifold of dimension
dim My, =8k —3(1 — by +03). (0.24)

Working more carefully, with the singularities at the forefront, let us define the trivial

bundle £, — A with total space
Eg=AX QE*(X, ad P). (0.25)
We then define a section s of &,

s(A) = FT. (0.26)

12Connections are locally one-forms, so cannot be themselves anti-self-dual. When we call a
connection anti-self-dual, we are commenting on the properties of its curvature.
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It is clear then that solutions to the instanton equation are the zero locus of s, namely
s71(0). Further, in order to only consider solutions up to gauge transformations,
have need to quotient s7'(0) by G. Unfortunately for us, there are connections in
A that are fixed under some gauge transformations, so the resulting quotient will
have singularities at these points. Ignoring the center of the gauge group, when
a particular connection is fixed by any elements of G, we say it is reducible, and
irreducible otherwise. For the case of SU(2), a reducible connection will have an
isotropy group isomorphic to U(1), and its adjoint bundle will split into a direct sum
of U(1) bundles. To a physicist, this is the phenomenon of the gauge symmetry
breaking.

Inspecting the definition 6. A in (0.17) and D4 in (0.14), we can identify reducible

connections by whether or not there exists € € Lie G that satisfy

5.A=—Dse=0. (0.27)

Locally on A, we can understand D4 here as a map

Da:LlieG — TyA, (0.28)

so that a connection is irreducible if and only if it D 4 has a trivial kernel, Ker D4 = 0.
Likewise, the image of D4 can be considered as the gauge orbit of the connection A.
We have a G invariant metric on A, so we can further define the adjoint of this
operator

D : TyA — LieG. (0.29)

It then follows that the tangent space at a point A € A will decompose into its gauge
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orbit and the kernel of DL, SO we write
TaA =Tm D, @ Ker DI, (0.30)

Together, this means the neighborhood of a irreducible connection in A/G will be
modeled by Ker DL, while the one for a reducible connection will be Ker DL quo-
tiented by the isotropy group of elements € € G with D e = 0.

Next, we want to bring the section s(A) back into the story. Suppose, we have a
irreducible connection A which satisfies s(A) = F'f = 0. Deforming this solution by
¥ € QX ad P) (since A is an affine space), in order to remain on the zero locus of

s(A) we require that F;er = 0. Hence, to first order, we have
(Dap)™ =0. (0.31)
The left hand side of this condition can be expressed by the map'?
Vs :TyA — Q?*(X, ad P) (0.32)

so that tangent vectors in Ker Vs are precisely those that maintain the instanton
equation. Since the gauge orbits of A were given by Im D4 we then conclude that for

a representative irreducible connection [A] € A/G, we have

TigMiuy = Ker Vs N Ker D). (0.33)

13We must be careful not to conflate the symbol V here with the metric covariant derivative
V which will appear latter. We would have written DI, but this leads to some rather perverse

equations when it meets with DL.
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This space can be realized as the kernel of the map
F=Vs& Dl :ThA— LieG & Q2" (X, ad P). (0.34)
All of this technology can be condensed into the Atiyah-Hitchin-Singer complex (2]
0 — LieG 2% Ty 2% 02*(X,ad P) — Coker Vs — 0, (0.35)

where the cokernel is defined as Coker Vs = Q2%(X,ad P)/Im V. In our work, it is

generically the case that Coker Vs = 0.1 This is a chain complex,'® as we compute
(VsoDa)e=[Fi,el =0, (0.36)

since [A] € My, where F'f = 0. Taking the homology groups of the complex, we

have its index given by
Indexppg = — dim H° + dim H' — dim H?, (0.37)

where HY = Ker D4, H' = Ker Vs/Im D4, and H?> = Coker Vs. Since, in this case

dim Coker D, = dim Ker D 4, we have

Index(F) = dim Ker F — dim Coker [F
— dim Ker Vs + dim Ker D', — dim Coker Vs — dim Coker D',

= dim(Ker Vs/Im D4) — dim Coker Vs — dim Ker D4 = Indexans (0.38)

HMWe will use this word “generically,” quite often. Technically, it means “on all but a set of measure
zero,” and intuitively it means “pretty much always.”

15This is to say that the composition of two consecutive maps in the diagram is always zero.
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This index is also called the virtual dimension of the moduli space for the following
reason. When [A] is irreducible (and Coker Vs = 0), this is exactly the dimension
of the Tjq My, and hence the dimension of My, in (0.24)! On the other hand,
when there are reducible connections, H° # 0 and the index decreases, as does the
dimension of Tj4Mj, 4, which is exactly what we expect at singularities. Fortunately
for the work here, we will rarely talk about reducible connections and thus moving
forward we write A/G with the nuances therein understood.

Having settled some of various objects that can be built on smooth manifolds,
we are ready to return to our second main question, namely which topological four
manifolds are smoothable. In 1982, following investigations into the nature of the
instanton moduli space, Donaldson provided a partial answer in his eponymous Don-
aldson’s Theorem [23|. Tt states that if a topological four manifold X with a definite

intersection form (Qx is smoothable then it must be the case that

Qx =m[+1] or Qx = m[-1], (0.39)

for m € Z". Combining this result with Freedman’s classification, we can definitively
state that any two smooth simply-connected four manifolds are homeomorphic if and
only if their intersection forms have the same rank, signature, and parity.

While a proof of Donaldson’s Theorem is beyond the scope of this thesis, it relies
on a careful analysis of the instanton moduli space M, ; of X. Continuing his analysis
of instantons, Donaldson also introduced his polynomial invariants of X, which them-
selves, for b > 1, are independent of the choice of metric. In other words, they are
full diffeomorphism invariants and only depend on a choice of smooth structure. It is
with such objects that one might hope to solve our still widely open third question

of how to classify smooth structures.
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The Donaldson polynomial invariants are themselves integrals of cohomology
classes on the (compactified) instanton moduli space. These cohomology classes are

parameterized through the Donaldson map which takes
pp s Hy(X,R) — HY"(My,). (0.40)
We then define the Donaldson polynomial invariants as

%T(Pm X) = / 1o (po) up (), (0.41)
Mg

for surface ¥ € Hy(X,R) and py € X. We can also introduce formal variables p and
s and write the Donaldson generating function as
pﬁ s"

ZD[g7p7S]: FF
Lr>0

DU (0.42)

As noted above, for by > 1 the ‘B%’" are constant rational numbers which are inde-
pendent of the choice of metric. Therefore, if two smooth structures on a smoothable
four manifold give different values of ‘,B%T, then it is clear that they have different
smooth structures. Unfortunately, when b = 1, they are only piecewise constant
rational numbers on Met(X), and change value over walls of codimension one. To
make matter worse, these invariants vanish completely on “half” of all smooth four
manifolds. To see this, note that when by > 0, the dimension of My, in (0.24) for
a generic metric is even only when by + b3 is also even. Since the integrand of the
invariant is a (4¢ 4+ 2r)-form on My, it is clear that B3 = 0 when by + b5 is odd
i.e. for “half” of all smooth manifolds. We do not take this as a failure, but rather

an opportunity to search for generalizations of these beautiful objects. But first, in
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order to practice good physical mathematics we need to understand how the current

invariants are understood physically.

0.2 N =2, d=4 Super Yang Mills

Ultimately, we will show that the Donaldson generating function is a correlation
function for observables in the topological twisted N” = 2 super Yang-Mills theory. At

present these words may have little meaning, so we begin with the simplest: “super.”

0.2.1 Supersymmetry

In the 1960s, there were a series of attempts to enlarge the number of symmetries
in the Poincaré algebra in order to account for, at the time, unknown physical phe-
nomena. Most of these attempts were put to rest by the famous Coleman-Mandula
Theorem [9]. As a weighty no-go, it states that the possible symmetries of a well-
behaved local relativistic quantum field theory are restricted to a direct product of the
Poincaré group and a compact Lie group. Therefore the only allowed generators of
symmetries are the energy-momentum operators P, the Lorentz rotation generators
M,,,, and some Lorentz invariant scalar charges in the Lie algebra of the compact Lie
group, say B. At its core, the theorem prevents the non-trivial mixing of space-time
and internal symmetries.

Fortunately for the world, or, at the very least, imaginary worlds, one can side-
step the restrictions of Coleman-Mandula by relaxing one condition. By allowing for
symmetries that transform bosonic fields into fermionic ones and vice versa, one is
permitted to include new symmetry generators that are in a spinor representation of
the Poincaré group. Mathematically, this means we are considering Lie superalgebras

as opposed to just a Lie algebra. These new spinorial objects are call supercharges
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and generate supersymmetries.t®

In four dimensions, there are two inequivalent two dimensional spinor representa-
tions of the Poincaré group, which are called Weyl spinors in physics. Denoting these
representations by their dimension, we write them as 2 and 2. The generators are
denoted by Q4 and @ 4, where A are the doublet indices of 2 and A are the doublet
indices of 2, which both run over the values 1 and 2. Hence, we have a total of
four supercharges in the minimal theory, which we call N = 1 supersymmetry. They

satisfy the anticommutation relations'”

{Q4,Q,} = QuQ 4+ Q Q4 = 20", P,, (0.43)
{QAa QB} = {@ZD@B} =0, (044)
where O’Z i 18 an intertwiner i.e. a homomorphism between representions, from the

tensor product of our two inequivalent spinor representations of Spin(3,1) = SL(2,C)
to the vector representation of SO(3,1). In addition, the full A/ = 1 super Poincaré
group has an extra internal U(1)g symmetry that only has non-trivial relations with
the supercharges. Under it, the () 4s have charge 1 and the () ;s have charge -1. In gen-
eral, internal symmetries which transform the supercharges are called R-symmetries.

We then write the even part of the full AV = 1 super Poincaré algebra as

SPY_; = R*! x50(3,1) @ u(1)g. (0.45)

The semi-direct product between translations and rotations reflects the non-trivial

commutation relations between these symmetries.'® Next, written in terms of rep-

16The canonical textbook for supersymmetry is [4], though a more modern perspective can be
found in [21, 22].

I7A cheap scrap of intuition is that supersymmetries are the “square root” of a translation.

18Walk forward and turn around and from the same initial position have your friend turn around
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resentations of the Lorentz subalgebra of the Poincaré algebra and R-symmetry, the
odd part is
SPy_, =292 ;. (0.46)

Here, the subscript indicates the u(1)g charge.

One can further extend this algebra to include an additional set of supercharges,
which then leads to N' = 2 supersymmetry.l® Introducing indices 7,5 = 1,2 to
distinguish between the two sets, our non-trivial supersymmetry relation is enhanced

to

{Q4, Q4} = 2570, P, (0.47)

where ¥ is the antisymmetric tensor, defined to have £'2 = 41. Further conventions
and notations for spinors can be found in Appendix A.2. The even part of NV = 2

super Poincaré algebra is then
SPYr_y = R¥* x50(3,1) @ su(2)g © u(1)g, (0.48)

where we recognize a larger R-symmetry, which rotates the two sets of supercharges,
thus giving ¢, j the meaning of indices of the fundamental represntion of su(2). In-

cluding this representations of su(2)g, the odd part is now
SPy_s = (2;2), @ (2;2) ;. (0.49)

This story has been up to now told in Minkowski space with a metric 7, =
diag[—1,1,1,1]. We are, of course, not interested in pseudo-Riemannian manifolds,

so we must perform a Wick rotation to the desired Euclidean signature. The resulting

and walk forward. You will find yourself at an advantage should you be about to duel.
9The reader is directed to the excellent resource [80].
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N = 2 super Euclidean algebra then has even part

SEQ_, = R* % (5u(2); @ su(2)_) ®su2r Su(l)g (0.50)

where we have exploited the Lie algebra isomorphism so(4) = su, (2) @ su_(2). The
odd part is then
SEns = (2,1;2); @ (1,2;2) 4, (0.51)

where we understand the (2, 1) representation of su(2), @su(2)_ as the Wick rotated
2 representation of s0(3,1) and likewise (1,2) as 2.
Having arrived at our final algebra, we now turn to one of its most important

representations.

0.2.2 Vector Multiplet

Representations of supersymmetry can be understood as a collection of bosonic and
fermionic fields, which we call a multiplet. Since we are interested in gauge theory,
we need to understand the multiplet that contains a gauge connection A € A(P)
amongst its fields. This representation is known as the vector multiplet.

Other than the gauge connection, the fields in the multiplet are two complex scalar
fields ¢ and ¢, two Weyl fermions v and 1 called gauginos, and, in order to keep an
equal number of bosonic and fermionic degrees of freedom, an auxiliary field D.?°
Each of these fields takes values in the adjoint representation of the gauge group G.
Further, the Weyl fermions are in the 2 of su(2)g while D is in the 3. Finally, each

field has a u(1)g charge. Collectively, this can all summarized in the table below.

20Counting, we actually find an extra bosonic degree of freedom which stems from the fact that

¢ and ¢ are not complex conjugates in Euclidean space. The resolution of this issue comes down to
a choice of “complex contour,” though we do not dwell on this subject.
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| Field | Symbol | su(2); @ su(2)- @ su(2)r | u(l)g |
Gauge Field

su(2)_ Gaugino
su(2); Gaugino
Complex Scalar

Complex Scalar
Auxiliary Field

W]RSHASHASHASH WS

Table 1: Vector multiplet fields.

We mention in passing that it is also possible to express this collection of fields in
terms of two representations of the N' = 1 algebra. Without diving into the business
of superspace, we have the fields A and 1 contained in a N' = 1 vector multiplet ,,,
and the fields ¢, ¢, and ¢ contained in a so-called N' = 1 chiral multiplet ®. The
auxiliary field D is shared between the two multiplet, and splits into two auxiliary
su(2)r doublets. We will very rarely appeal to this language, and refer the reader to
[37, 56, 89| for a more thorough discussion of the superspace formalism.

In order to write the transformations of these fields under supersymmetric trans-
formation, we introduce two anticommuting variational parameters €?; and EAi. We

then define the transformation of an arbitrary field O through
50 = (@) + €QH)0 (0.52)

Suppressing spinor indices for the moment, we have

66 = —€',, (0.53)
56 = €'y, (0.54)
§A, = €'o, ), — €0, (0.55)

0 = aa“Dﬁ + €i[¢7$] + €0 F), — ejDij’ (0.56)



33

00; = —€i0" Dy — €[, §] + €6 Fuy + € Dy, (0.57)

(SDij = 26(1'0-“D,u@j) — 2E(iJuD#¢j) — G(i[¢, %)] +E(z[$7 E])] (058)

Here, we write D,, for the gauge covariant derivative Dy = d + A and ¢"” or o"” for
the projection onto the self-dual or anti-self-dual subspaces of two forms.

With just this data, our fields are only defined on R*. In order to extend their
definition to an arbitrary four smooth manifold X with a principal bundle P — X, we
must provide the additional data of a principal bundle Px — X for the R-symmetry
SU(2)r. With the addition of this structure, we can now consider each field as a
section of a particular bundle over X. Case by case, A is a G-connection for P, ¢ and
¢ are sections of ad P ® C, the adjoint bundle extended to the complex numbers , D
is a section of ad P ® W, the adjoint bundle tensored with a real rank three vector
bundle associated to Py, and v and v are sections of ad P ® S* ® Sg, the adjoint
bundle tensored with spin bundles S* on X and a spin bundle Sy associated to Pg.

The mathematically savvy will object to the last identification above, as the exis-
tence of spin bundles S* requires a spin structure. In fact, “most” four manifolds are
not spin, and in such cases any attempt to lift transition function to a spin bundle will
encounter a Zso conflicts over intersections. The root of the issue is an obstruction
to lifting a SO(4) bundle to its double cover Spin(4), which is realized in the sec-
ond Stiefel-Whitney class wo(TX) € H*(X,Zsy) of the manifold. In a phrase, wo(X)
measures the obstruction to trivializing TX over oriented surfaces embedded in X.
Thankfully, there is a nifty side-step to this obstruction for the case at hand. Should
wo(TX) # 0, we take Pr to be a principal SO(3) bundle whose own second Stiefel-
Whitney class satisfies wq(Pr) = wy(TX). Then, while on their own S* and Sy do

not exist, the bundles S* ® Sg do exist! Since the issue in the transition functions
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hinges on a Zs, the bundles can conspire to solve each other’s problem; two wrongs
do make a right in Z,. We will see how this work-around can be fully exploited when

we conduct our twist.

0.2.3 N =2 Super Yang Mills Action

We now come to the end of our “untwisted” story with the NV = 2 super Yang-
Mills action. Tt is defined as the “supersymmetric completion” of the Yang-Mills
action (0.19), that is, the minimal extension of Syy that it is invariant under the

supersymmetric transformations of (0.53)-(0.58). Explicitly, we have

1 1 1 »
Savm = P /Xd%\/?Tr [ZF#VF#V — §Diij — D,¢D" ) + 4 "D,
0

16,91 T [91,9] - 516,97 . (0:59)

where go is the constant bare gauge coupling. Here the derivative D, is not only gauge

covariant, but is also metric covariant and therefore it contains a spin connection w

A AB

which splits into two components wt = w, Band w™ = w, 7, associated to its self-
dual and anti-self-dual parts.?! They can likewise be viewed as the spin connections
for ST and S~ respectively. Further, the derivative is also covariant with respect to
the R-symmetry transformations, and thus contains a connection for Py, which we
call wg.

In addition to (0.59), it is customary to include the topological term of the in-

stanton number which we introduced in (0.18). The term is by itself invariant under

our supersymmetry transformations, and we can freely add it to our action, leading

2l'We are being quite coy with indices here. For those who peruse Appendix A.2, we note that
the spin connection w has the index structure w#ab, where a and b are frame indices. We then have
wtAB ABy, b and w;AB — 5 By

= o ,ﬂb. In curved space, our " should be written as e, o®

to make this clear.
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to

0o

SSYM SSYM + — 64r 3

/ d*zTr [P7 F,, F,p (0.60)

where we have introduced the constant theta angle 6,. We note in passing that the
normalization here have been taken to align with [62, 71].

The theory just introduced is a specialization of the most general vector multiplet
action. Written in terms of NV = 1 superspace, the general action for an abelian gauge
group takes the form

1 L o OF(®)— / 29 P F
SVM_MImUdede 56 0t [0V Wil (0.61)

where we write X for the A’ = 2 superspace of X which has coordinates (z,6,6). The
theory is entirely specified by the gauge invariant holomorphic function F(®), which
is called the prepotential. Further, it is constrained to be homogeneous of degree two,

which means that CF(A®) = A\2F(®) for some A € RT. If we take

F(®) = %@2, (0.62)
where 7y is the complex coupling constant
47y (90
= — + —. 0.63
To 9(2) + ot ( )

Then Syy with this prepotential will be identical to Ssyn with an abelian gauge
group. Since this quadratic prepotential has the minimal amount of interaction be-
tween fields allowed by N/ = 2 supersymmetry, Ssym, for any gauge group, is often
called the free theory. We will also often refer to Ssyn as the UV theory.

The breakthrough of Seiberg and Witten in their work |76, 77] was to provide an
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exact low energy effective theory for the G = SU(2) N = 2 super Yang Mills theory
Ssym. Flowing the UV theory into the low energy limit, the so-call IR theory, they
discovered that the gauge symmetry is generically broken to U(1) at every point on
the space of quantum vacua. Their solution provided a explicit computation of the
prepotential F(®) for a theory of the form (0.61). While we will not dive deeper into
the fascinating world of Seiberg-Witten theory here, our generalization of Donaldson-
Witten invariants will extend to the twisted IR theory, so it behooves us to be familiar

with the form of its action.

0.3 The Twist

With A/ = 2 supersymmetry addressed, we are now prepared to expose the “twist.”
Succinctly, twisting is the procedure of constraining a thoery to a particular gravita-
tional background whereon the correlation functions are independent of the metric,
i.e. topological. In addition, the resulting supersymmetry algebra contains a scalar
supercharge Q which satisfies Q? = 0 on gauge invariant objects, therefore allowing
for one to speak of the cohomology of the theory. We will provide a few perspectives
on this process.

For a first taste, recall from our discussion of the vector multiplet that our ability to
put the N’ = 2 super Yang-Mills theory on an arbitrary four manifold X is predicated
by a choice of SU(2)g principal bundle Pg and a choice of connection wg. As Witten
realized, this choice can make a world of difference. Suppose we take Pr to be
isomorphic to the SO(3) bundle P — X associated with self-dual forms on X, and
then further make the choice that the connections on each bundle are isomorphism,

i.e. wt = wg. Then, looking at Sgym, we realize all w™ and wgr dependence is
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contained in the EiO“DM@DZ- term. Expanding the derivative, we have

. . . 1 . 1 .
D, = 9,00 + [A,, 0] + §w;AB¢’B — EWR;JW‘, (0.64)

Exploiting the isomorphism Pgr = P to its fullest extend, we have
wr, 707 = wiAP oy (0.65)

where we are identifying the su(2)r and su(2), indices. With this identification the
last two terms of (0.64) above cancel, quite remarkably eliminating all dependence on
w* and wg in Ssyy. This isomorphism w = wg should be understood as changing
the theory’s coupling to gravity, since w™ is indeed dependent on the metric on X.
For a more systematic and global perspective, consider two subgroups of the super

Euclidean group given by

Go = (SU(2); x SU(2)_ x SU(2)R)/Za, and G1 = (SU(2); x SU(2)_)/Zs,
(0.66)
where both quotients are by the central subgroup which acts as (—1,—1,—1) and
(—1, —1) respectively. Ignoring the abelian R-symmetry, Gy is the group under which

our supercharges transform, with the spinor representation of
(2,1;2) @ (1,2;2). (0.67)

The subgroup G is the structure group of the tangent bundle TX, that is, the rotation

group, and itself dictates the behavior of the theory’s gravitational coupling. We now
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introduce the injective homomorphism G; < G, defined by

[(91,92)] — [(91, 92, 91)], (0.68)

where we are working with equivalence classes under the Z, quotient. Now, given
a Riemannian metric, we can specialize to Gg-bundles with R-symmetry and Levi-
Civita connections which pullback to G;-bundles with a single Levi-Civita connection
under the homeomorphism. This is likewise equivalent to defining a new SU(2)’_ as
the diagonal subgroup of SU(2), x SU(2)g, and then taking (SU(2)!, x SU(2)-)/Z,
as the new structure group for 7X. In mathematical parlance, we are conducting
a reductive of the structure group associated to the homomorphism (0.68). In this
approach, the rationale for identifying the su(2)gr and su(2), indices in (0.65) is
manifest.

We can pullback our supercharges under this map to obtain a new representation

(1,1) & (3,1) & (2,2) (0.69)

We thus see that our original eight supercharges have been “twisted” into a scalar
supercharge Q, a vector supercharge K , 4, and a self-dual supercharge Q7 ;. Note that
none of these are spinor representations, and therefore the resulting theory has no need
for a spin structure and can be defined on any smooth four manifold X. Unfortunately,
in general, a smooth four manifold does not admit non-vanishing vectors or self-dual
forms, so K, i and Q5 will not exist. Thankfully, all smooth four manifolds allow
for a non-vanishing scalar field Q.

While escaping the need for extra structure on X is a great boon, we have yet to

see the real power of the twist. To do so, we turn to the twisted vector multiplet and
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its transformations under our new scalar supercharge Q.

0.3.1 Twisted Vector Multiplet

Let’s take a look at the resulting twisted vector multiplet representation. In the
trenches, the twist follows a very simple program. First, utilizing the index inden-
tification perspective of (0.65), every time we find a su(2)g, index i, j we replace it
with a new su(2), index A, B. Next, since the twist theory is devoid of any spinors,
we will exercise to the fullest extend our intertwiners o, and o0, arriving at objects
with exclusively spatial indices u, v, &c.

We begin by noting that any fields that transformed trivially under the SU(2)g
symmetry, namely the scalar fields ¢ and ¢ and the gauge connection A,, do not
change. Nevertheless, to align with the literature, we will write ¢ as A\.?> Meanwhile
the Weyl fermions experience radical developments. First, ¢ Ji; how becomes P ip> SO

we define??

Y = 0 4 (0.70)

Turning to v 4;, we arrive at ¢ 45 which splits into symmetric and antisymmetric parts

as

1
VYap = Pap) + 51/)6,43, (0.71)

where 1(4p) is the symmetric part and 1 is the trace. We then define

1
Xpv = O_SUB (AB)> and n= 5% (072)

22Tt is worth mentioning that in the physical theory, prior to the Wick rotation, the fields ¢ and

¢ are complex conjugates of each other. In the present theory, we do not recognize this relation and
consider ¢ and A to be independent fields, thus the change in notation. If we were to require them
to be complex conjugates of each other, then the final objects in our analysis, the Donaldson-Witten
invariants would not be real.

23We lament the notation, but the literature is rigid in its preferences. It is crucially important

not to confuse this with 1 4;.
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giving us a self-dual fermionic two form Y, and a fermionic scalar 7. Finally, the
auxiliary field D;; originally transformed in the 3 of su(2)g, so as Dap, we can express

it as a self-dual two-form and write

Dy = 0,7 Dag. (0.73)
At times it is preferable to use an alternative auxiliary field definition of

H,, =F}, = Dy, (0.74)

which we note is still very much a self-dual field. The twisted vector multiplet field

content is summarized in the table below.

| Field | Symbol | su(2), @ su(2)_ | Bundle [ u(Dg |
Gauge Field A, (2,2) A(P) 0
Vector Gaugino Yy, (2,2) N (X, ad P) 1
Scalar Field ) (1,1) 0°(X,ad P) 2
Scalar Field A (1,1) 0%(X,ad P) -2
Scalar Gaugino n (1,1) QY(X, ad P) -1
Self-Dual Gaugino X (3,1) o2+ (X,adP) | -1
Self-Dual Auxiliary Field | H,,/D,. (3,1) §2§’+(X7 ad P) 0

Table 2: Twisted vector multiplet.

Above, we denote the superspace of a bundle F — X as I[IE, which indicates that
the fibres are considered odd i.e. fermionic. We also would be remiss not to mention
that both IIQ2* (X, ad P) and Q2" (X, ad P) depend on a choice of metric g € MetX
as can be seen in the definition (0.10). This will be a source of momentarily turmoil
when we move to our generalization. Finally, since everything is valued in ad P, we
will often omit it.

Next, turning to the twisted transformation laws, our original (0.53)-(0.58), re-
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stricted to just the scalar supercharge Q, gives us®!

5|Q¢ =0, (0.75)
3|\ = en, (0.76)
0| oAy = €y, (0.77)
8| on = €lg, Al, (0.78)
0| X = €F, — €Dy, or 6| Xy = €, (0.79)
8| gty = —€Dyu, (0.80)
0| oDy = 26(Dytb)™ — €ldy Xl or 8| JHpw = €[, X (0.81)

Reversing our definition for the transformation (0.52) and extracting the parameter

€, we can rewrite the above as

Q¢ =0, (0.82)
o\ =1, (0.83)
QA, =1, (0.84)
Qn = [\, (0.85)
OXw = F:V - D,,, or X = Hp (0.86)
Y, =—-D,¢, (0.87)
OD,, =2(Dytby)™ — [, xw),  or  QHu, = (6, Xl (0.88)

24Here we are working with fields rescaled relative to the original work of Witten. Denoting the
fields of [85] with a superscript W, we have ¢ + i)V, ¢ — iV, X — fi)\W, 7 %77, and
Xuv % X}f{,. Since the theory there is on-shell, one must also note a use of the equation of motion
D,, =0.
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With this approach, we see that
Q% = 6y, (0.89)

where 04 is a left-action gauge transformation by ¢. In a physical theory, we exclu-
sively work with gauge invariant objects, and therefore our scalar supercharge Q in
this context is a nilpotent differential. Indeed, as we will discuss in the main body of
our work, Q is the differential for the quotient space A/G and allows us to consider
the equivariant cohomology classes of Hg(A(P)), but all in due time. At present, it’s

time to twist the action.

0.3.2 Twisted Super Yang-Mills Action

Twisting the fields of our N' = 2 super Yang-Mills action (0.60), we arrive at our
twisted UV N = 2 super Yang-Mills action

1 1 1 1
Suv = ? / d4$\/§Tr [ZF;WFW - QDWDW + 2(Dpib ) X" + §XIW[¢7 X
0 Jx

— 20Dy — 2X\[Wh, ¥¥] + 2D, DV — 2¢[n, 1] — 2[¢, AJ?

10y
6472

/ d*zTr [P F,, F,p . (0.90)
X

Here, since the action is entirely quadratic in the auxiliary field D, its equation of

na
motion is simply D, = 0. In our conventions, that
1

1 , v L wpe
L_l\/gF#VF# = 5\/§FLF_'~L_L - éE'u P FHVFPf” (091)

SO we can rewrite our action as

1 1

1 v Nz LV 1 v
Suy = ? / d4l‘\/§TT {iFLFJﬁ - §DMVDl + 2(D/¢¢V>Xl + §XIW[¢? XM ]
0 JX
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=20 D" = 2\[thy, ¥M] + 20D, D) — 260, m] — 2[¢, A)’]
iTO

+ 3 ; d'xTr [P F,, F,y) . (0.92)

where we recall the definition of our complex coupling 7y in (0.63). Further, and quite

crucially, we can now write the entire twisted action as®®
?:7'0
Svv = QVigv + — TrFy A Fy, (093)
81 X
where
1 4 1 + v
Vv = ? d*z\/gTr §(F;w + D)X = 2AD, " — 2n(g, A| . (0.94)
0 Jx
In this formulation, it is manifest that
QSyv =0, (0.95)

since Viyv is a gauge invariant object and Q% = §,. The topological itself closes under
Q, since it results in a total derivative.

While the fact that our action can be written as a Q-exact part and a non-exact
topological term is remarkable on its own, the true beauty of the theory is hidden in
the metric dependence. We have already seen that our choice of isomorphism between
the principal bundles Pz and P* leads all dependence on the spin connection w to
drop out of the action, but there is still explicit metric dependence in the action. To

see it, we take an infinitesimal change ¢g"* — ¢"” + 0¢g"” and compute the energy-

25Qur convetions for differential forms can be found in Appendix A.1.
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momentum tensor of the theory through

1
0 Suv = 5 / d*z\/90g" T, . (0.96)
X
We then find
uv 1 p 1 p 1 po
T'LW =Tr §FHPFV + 5 Z/pFl/ — ZQWF Fpg
1 loa
(Do) x” + (Dptbp) X" — 59W(Dp%)xp

+2(Dun)tby + 2(Dyn)tby — 29,0 (Don)t?

_Q(Du)‘) (Dvo) +2(D,A) (Du¢) + QQMV(DpA)(Dpr)

_2/\[¢uu 1/}1/] + 29,“/)\[%» z/}p] + 29#1/925[7]7 77] + 29,&1/{(?7 )‘]2 . (097)

In this computation we have made use of the fact that X is closed, allowing us to
integrate by parts and avoid any variations of our Levi-Civita, or metric, connection.

We have also made use of the identity

1
0g/9 = _5\/§9W59W- (0.98)

Finally, the self-dual fields have implicit metric dependence which must be preserved

under a change in the metric. For example, we have
1 . 1 ool o0’
8gD, = —ngég D,, + iﬁewpgég 977 Dy (0.99)

Variations of this sort will soon become commonplace and they are thoroughly ex-

plored in Appendix D along with a myriad of other useful identities. Inspecting (0.97),
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we see that it can be written

TV = QATY (0.100)

puv uv

where

1 1 R
AEIY =Tr QFMpXVp + §vaXup - ZQMVF'D Xpo

+2(D A\ + 2D\, — 20, (De NV +2g,mlo, N |- (0.101)

In the next section we will see how the fact that the energy-momentum tensor is
O-exact means that the theory is truly independent of the choice metric and that all
correlations of its observables are diffeomorphism invariants of X.

Before we turn to the exciting conclusion to this tale, we quickly display the
twisted IR theory. Here, we want to write the explicit twisted action (0.61) for a U(1)
vector mulitplet with an arbitrary prepotential . With an abelian gauge group, our

transformations (0.82)-(0.88) now take the form?*®

QA = Yy, Y, = —V,a, (0.102)
Qa =0, (0.103)
Qa =, Qn =0, (0.104)
QX = F5, = Dy, 9D, =2V, ", (0.105)

where for historic reasons we write a for ¢ and @ for A\. Further, we define the arbitrary

complex couplings
0*F(a) 0*F(a)
da? ’ oa*

26To obtain the transformations and action of [71] (and the more general case of [62]) exactly,
1 _—u

denoting the fields therein with superscript u, there is a rescaling of a — 4v2a"%, @ — 3345

T = and T =

(0.106)

n = 2" and X = —iXG,-
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We, again for those who read footnotes, recognize that in the Euclidean theory, twisted
or not, F and F are independent functions and need not be complex conjugates. For

this reason, we take it as a definition that

(0.107)

Then, our twisted IR N = 2 super Yang-Mills action is

1
SR = —— d4x\/_ { TELFY — QTFP;FT' + 4ilm7(V,a)(V?a) + ilmr D, D"
+279, VN = 2TV b7 — 279,V X" + 27(V 1, ) T x*
107 0
+§a—i (Fyfy + D X" = 52, (P + D)
0T oo ot
+12 g 18 3 e wuwu¢p¢a+ Q (128_X,u X Xpa> :|

(0.108)

Similar to the UV theory, this action splits into an Q-exact part and a non-exact

topological term. We write
Sk = Q(Vir + Vir) + Cir, (0.109)
where

ViR = — d4x\/_ [ T(Fh + Dy X" — 274, V7a + &wuwyxﬂu} . (0.110)

. OF . U OT
VIR—2T d4x\/_[ T(F, + D) X" —2— Votl” + 592X X" Xpoy

(0.111)
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and
7 4 1T oo 107 0 10* .
CIR = % Xd x |:Z€LL r F,uzszo - §%€H P w/ﬂqupa + E%GH P wuwu¢pwa
(0.112)
Here, the action is, of course, Q-closed as
OS5k =0, (0.113)
though the closure of the topological term is a pinch more involved, as
OCr = L d*zV , | Te" P, F,, — lge“”””@b Vs | =0 (0.114)
241 Jx # P73 0a vrere ’

since X is closed.
We can also observe that when we specialize to an abelian gauge group and take

the quadratic prepotentials
Fla) = EGQ, and  F(a) = 262, (0.115)

where we do actually mean the complex conjugate of the complex coupling constant,
then the action Sig agrees with Syv.
0.3.3 Donaldson-Witten Invariants

We are now at long last ready to construct the Donaldson-Witten invariants. To
start, we will investigate the properties of the simplest of the invariants, the so-called

partition function. It is defined as

Zwlg] = / [dVM]e vV, (0.116)
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where we have introduced the vector mutliplet path integral measure?’

[dVM] = [dA dé dA\dD dip dn dy]. (0.117)

In the most important computation of the twisted theory, under a change in the

metric, we find

5,Zwlg] = 9, { / [dVM]e‘SUV] (0.118)

= / [dVM]4, (™) (0.119)
% /X d‘*x\/@ég“”(x)ﬂ};v(x)) e~ oV (0.120)
{— /X d'z\/g(x)dg" (x) ALY (m)] e~y (0.121)
_ / [AVM]Q {5 d%Mngwx)Agy(m)e—ﬂ (0.122)

= 0. (0.123)

We have been rather pendantic as nearly every lines holds an important lesson. In
the first line, we rely on the fact that there are no diffeomorphism anamolies in
four dimensions [1]. If there were, we would have not been able to move our metric
variation through the vector multiplet measure. The next line is definitional, but
allows us to exploit the hallmark relation of (0.100) in moving from (0.120) to (0.121).
As mentioned prior, the exactness of the energy-momentum tensor is the crux of the
twist. Next, since QSyy = 0 on account of the residual supersymmetry, we have

the next line from (0.121) to (0.122). Finally, the final line is a lie, that is to say

2TWe will not concern ourselves here with the “mythic” properties of this measure. Suffice to say
that a rigorous definition of the path integral has long eluded mathematicians. It is the author’s
perspective that any physical mathematician that accepts the path integral into their hearts will be
met with a fount of results. As is often said, “Too much rigor leads to rigor mortis.”
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it is only formally true. It requires an integration by parts over the entirety of the
vector multiplet field space, which is known to fail for X with b5 = 1, where there are
contributions from boundary terms. In this case, Zpw|g] is only piece-wise constant
on Met(X). Though, at present unknown, there is also an expectation of continuous
metric dependence for b = 0 [75] . Still, for b > 1, the final identity holds and the
partition function is entirely independent of the choice of metric!

We can also consider correlation functions of gauge invariant observables of our

theory. For such an object O, we define its expectation value
(O)yy = / [AVM]O e 5V, (0.124)

Note that, expect in cases where the field space integration by parts fails, if O is

Q-exact, say O = QV, we have
(O)vv = (QV)uv = 0. (0.125)

That is, O-exact operators decouple from the theory and we can form equivalence
classes under which two observables are equal if they only differ by the addition of a
Q-exact term. In addition, if an observable has no metric dependence and is Q-closed,

we have

1

,(O)ov = 5 /X ' /g@)(Q (OALY (2))) ivdg™ () = 0. (0.126)

Therefore, the expectation value of any Q-closed, gauge invariant observable will be
formally independent of the metric. The interesting, i.e. topological, observables
of the theory are those that live in the cohomology associated to the differential

Q. Since Q squares to a gauge transformation as Q* = J,, we must restrict to
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gauge invariant observables. Indeed, what we are really doing is working in the
equivariant cohomology of the space of gauge connections A(P) with respect to gauge
transformations G, denoted Hg(A(P)). In the next section we will fully explore this
perspective.

At present, we will simply exhibit elements of Hg(A(P)). Consider the tower of

densities

00 = %Tr[qﬂ, (0.127)
oW = —Tr[py,]da, (0.128)
0 = %Tr[qSFW + bt Jdat A da, (0.129)
0B = —%Tr[zﬂuFl,p]dx“ A dx¥ A da’, (0.130)
oW = iTr[FWFpg}dx“ Adz” A da? A dx°. (0.131)

Under the action of the scalar Q, they satisfy the descent equation
QO™ = doi"~), (0.132)

with d the exterior derivative of X. Integrating these observable densities over appro-

priate cycles, we define the n-observables O(%,,) associated to the n-cycles X as
on(x,) = / om. (0.133)

These classes only depend on the homology classes of ¥, in cohomology, as if 9%, = 0,

then

Q0"(5,) = [ 0"~ [ onv—p (0.134)
0Xn

n
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via the descent equation. Likewise, if 3, = 03,1, then

on(z,) = / dO™ = / QO — 9O t(x, ). (0.135)
En+1 Zn+1

This is reminiscent of the Donaldson map pp in (0.40), where each ¥, € H,(X) is
mapped to a cohomology class H*~"(My,,), where we recall that My, , is the subspace
of A/G where F T = 0. The correspondence is even more robust when we identify
the u(1)g charge of our twisted vector multiplet fields as the cohomological degree of
Hg(A), so that our n-observables has degree 4 — n.

The observation above this suggests that we should integrate our n-observables
over My, as we did for the Donaldson polynomial invariants. As it turns out, this is
precisely what is down by the path integral in our twisted theory! To fully understand
this, we turn to the Mathai-Quillen formalism, though we will work in a direction
reverse to the standard approach. For those interested in pedagogy, we direct the
reader to the wonderful references [3, 10].

Suppose we have a Q-closed, gauge invariant observable O. We then suggestively

write its expectation value as

<O>UV = /[dVM]OB_SUV
:/ [dAdy)] / __ [dHdx] / [dg] / [dAdn] Qe QN HVETHVEY) —2minok
A Q27 (x) LieG LieG
(0.136)

where we have introduced a myriad of new definitions. Here, for reasons that will

soon become clear, we have split Vv into

1 1
V[If\f}c = — / d4x\/§Tr l(FW — 5]—]“”) XMV:| , (0.137)
90 Jx
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1
Vi =—= / d*z\/gTr 22D "], (0.138)
90 Jx
1
Vi === [ deyTralo. (0.139)
0 JX

Next, turning to the integration, we define M of a manifold as the superspace of the
tangent bundle, so that M = OTM. With this in mind, we see that A and n are
the coordinates of I_i/e\g, A, and 9, of .A/(F), and H,, and Y, of Q§/+(\X) Working
generally, suppose that the even coordinates of M are given by z and the odd by .
Integration over both x and % is isomorphic to integration over M with differential
forms. Under this isomorphism, we map each odd v coordinate to a generator dx of

—~

T*M. Thus, writing wo € Q*(M) for the image of O € C*°(M), we have

[ ltsavio - [ wo (0.140)

M M

Returning to (O)yy, our goal is to realize that the right hand side of (0.136)
is conducting an integration of wp over My ,. To begin, let us first deal with the
quotient by gauge transformations, or, as we will refer to it, projection. Putting aside
the issue of reducible connections for a moment, consider the principal G bundle
m: A— A/G. We would like to write integrals over the base of this bundle as

integrals on the total space. That is, for an element w € H(A), we want

/ w:/w*(w)P(A%A/Q), (0.141)
A/G A

where P(A — A/G) is the projection form. As we will see later, the equivariant

cohomology of w € H{(A) is actually generated by the fields A, ¥, and ¢, so the
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correct statement is technically given by

Juo?= huglte [P 419 o1

This is known as the integration of equivariant forms and was introduced in [86].
Further, a representative projection form is given exactly by the integral®®

[d\dn)e= 2V (0.143)

LieG

P(A— A/G) = /

which is identical to a term in (O)yy.

Next, we turn to the localization to solutions of s(A) = Fif = 0. In general, given
a vector bundle 7 : £ — M, where the rank of E is m, there is an isomorphism
between the cohomology of M and the cohomology of E with compact vertical sup-
port, that is H"(M) = H{E(E) via w — 7 (w) A®(E) . This isomorphism is known
as the Thom isomorphism and ®(E) as the Thom form [7]. In physics, we prefer
Gaussian decay, or rapid descent, as opposed to compact vertical support, which is
easily implemented after adding the structure of a Riemannian metric on the fibres of
E. Given a generic section s of E, if M is compact, the pullback of ®(F) is Poncaré

dual to the zero locus of s, denoted Z(s), so we have

/M wA s (D(E)) = /Z ., (W), (0.144)

where ¢ : Z(s) < M is the inclusion map. From this, we see that s*(®(F)) is a
representative of the Euler class of E, denoted Eul(E) or Euls(E, V) when a section
s or connection V is specified. The Euler class measures the “twistedness” of a bundle

and measures (with sign) the number of intersections of a generic section with the

28Consult Section 14.3.3 of [10] for a concise proof.
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zero section. Further, if one specifies a connection V on E and s is not generic, the

above relation is changed. In such cases CokerVs # 0, and we will have

/Mw NS (P(E)) = /Z( | " (w) A Eul(CokerVs — Z(s)), (0.145)

where the second form on the right hand side is the Euler class of the bundle
CokerVs — Z(s). We will return to this caveat shortly when we reconsider reducible
connections.

The Mathai-Quillen formalism gives an explicit construction of the Thom form
as an element of equvariant cohomology that is normalized to one [65]. Taking the
pullback of this universal Thom form through the desired section, one arrives at
an integral representation of the Euler class Euly(F, V). Without rifling through
the details,?® this story can be formally extended to the infinite case when the zero
locus s71(0) is finite dimensional. Thus, we can consider it for our particular case of
£ = Ax Q2" (X) — A with section s(A) = F{. Written in superspace, it takes the

form

Bul,(E,V) = / _[dHdx]em SR, (0.146)
Q7+ (%)
and formally satisfies
[ dAdY|OFLL(€, V) = / 7 (wo). (0.147)
A Z(s)

Note that since £ is a trivial bundle, CokerVs = 0. This expression will soon be

modified when we include projection.

29Physical mathematicians of the world unite, we have nothing to lose but extraneous details
(though we know of them and realize their importance.)
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And indeed, putting everything together, we have the grand result that

/ [dAdypdHdx)] / [d] / [dAdn) Qe QWEHVE) — / wo A Eul(CokerF),
g LieG LieG Mgk

(0.148)

where we recall F as the map V @ DL from (0.34). Of course, generically away
from reducible connections, the right hand side here reduces to a simple [ My WO
just as desired. In any case, it is clear that the integral is only non-vanishing when
degwop = Index[F.

Before moving on, let us note the two differences between (O)yy in (0.136) and
(0.148) above. The first is the exp[—QV{Y'] which is clearly Q-exact and should not
ruffle our feathers given our earlier discussion. Further, it contains a scale potential
V = %[gb, A2 whose solutions parameterize the classical vacua of the theory. The
second term is exp[—2miTok] which is both Q-closed and a topological invariant in its
own right, so can happily come along for the ride.

Coming to the conclusion of this chapter of the story, let us return to the corre-

lation functions of our n-observables. We define

B (0, 2) = (09(p)" (02(2)) Yuv. (0.149)

Recalling that the degree of an m-observables in Hg(A) is 4 — n, we see that ‘Bf,’vr
vanishes unless 4¢ 4 2r = IndexIF “ = 7 dim M, ;. In addition, as the correlation
functions of Q-closed, gauge invariant objects, they will be formally independent of

the metric. Having run the gauntlet through the Mathai-Quillen construction, it
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should now come as no surprise that, up to a constant prefactor, we have

W) =B (%) (0.150)
as well as

Zwlg,po, X] = <€O(o)(po)+o(2>(2)>UV = Zvlg, po, ¥ (0.151)

Having unified the perspectives, we thus refine our notation refer to both sides above
as the Donaldson-Witten partition function Zpw.

While outside the purview of this work, in order to compute Zpw one can flow
into the low energy regime and turn the crank of Seiberg-Witten theory. This flow
is conducted by taking the length scales to infinity, which is the same as changing
the metric. Since the twisted theory is topological, the flow is exact, that is, the UV

invariants are exactly equal to the IR invariants. We can therefore write

Zowlg,p, 3] = <60<°>(p)+0<2>(2)>w _ <e(91(%)(p)+(9§§)(2)+22T(u)>IR, (0.152)

where the correlation function on the right hand side is the path integral weighted by
the IR action Sig. The term T'(u) is the so-called contact term which result from the
surface Y having self-intersection. The benefit of the IR theory is that it is abelian,
which greatly simplifies the integral. Here, we have certainly been glib and glossed
over a sea of complexities, so we refer the curious reader to [71, 87, 88|.

But enough of the past and onto the future!
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1 The Algebra

1.1 Overview

Having settled the features of the original Donaldson-Witten invariants, we now shift
to our construction of the family invariants. An early idea from Donaldson [24]
and later refined by Moore and Witten [71] was to consider Zpw as a degree zero
element of the equivariant cohomology of the space of metrics Met(X) with respect
to orientation preserving diffeomorphisms Diff  (X). This immediately implies the
possibility of higher degree elements, which could be understood as diffeomorphism
invariant differential forms on Met(X). Such forms could then be integrated over
appropriate families of metrics to construct new smooth invariants of X. These are
the family invariants.

Recall that Zpw was constructed by integrating elements of Hg(A(P)) over all
twisted multiplet fields, which we should now view as a projection from a total space
down to the base space of Hpjg, (x)(Met(X)). Therefore, extending to higher degrees
in the base requires a similar extension in the total space. Prior to specialization
to cohomology, this total space needs to include M = Met(X) x A and, to work
equivariantly, we need to take the quotient by G = G x Diff (X). Therefore, our goal
will be to understand the cohomology of “M/G.” Since there are fixed points of M
under G, such as isometries of X and reducible connections of A, this space is not a
manifold, and it is difficult to speak of its cohomology in a smooth way. Therefore,

one introduces the space
EG xgM = (EG x M)/G, (1.1)

where EG is the total space of the universal G-bundle, defined to be a contractible
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space equipped with a free action of G. Here, the quotiented G-action acts as ¢ -
(h,z) = (hg™!, gz) for g € G,h € EG, and = € M. Since EG is contractible, it adds
no new homotopy classes to EG x M, and, since it has a free action, the quotient by G
produces a well-defined manifold. This leads us to define the equivariant cohomology

of Ml with respect to G as

This construction can likewise be done arrive at the equivariant cohomologies of
Hg(A(P)) and Hpig, (x)(Met(X)). The maneuver around the singularities of “M/G”
is known as the Borel construction and is, in general, not immediately tractable.
What we desire is an algebraic construction, which will lead us to the Cartan model.

Before turning to our explicit construction of the Cartan model of Hg(M), we

briefly recall the well known structure of Hg(A(P)) and Hpjs, (x)(Met(X)).

1.2 Hg(A(P))

Recall the transformation laws of the N = 2 twisted vector multiplet from (0.82)-
(0.88). As we have previous alluded, the transformations of (A, 1), ¢) are a presenta-
tion of the base of the Cartan model of equivariant cohomology of A(P) with respect
to G where the scalar supercharge Q plays the role of the differential. In addition,
(A,n) and (x, D/H) form modules for Hg(A(P)) often called anti-ghost multiplets.

The total complex for this model is given by

(Q(A(P))®5* (LieG) @02 (X, ad P)@IIN>* (X, ad P)202°(X, ad P)@I10(X, ad P))Y,
(1.3)
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The superscript G denotes the fact that we are restricting to the G-invariant subcom-
plex and S*(LieG) is the symmetric algebra of LieG. This complex is only slightly
altered from the presentation of Table 2, with the one difference that we now write
S*(LieG) for the home of the scalar ¢. We also now refer to the u(1) charge as the

gauge degree, as summarized in the table below.

Field | Gauge Degree
A, 0
O I
10) 2
A -2
Ui —1
H,, 0
X,uu -1

Table 3: The gauge degree of the fields of Hg(A(P)) and its modules.

For convenience, we repeat the transformation laws here, collected as

QA =Yy, QY =-Dug, (1.4)
Qp =0, (1.5)
QXN =1, Q=14 (1.6)
QX = Huy,  QHp = [, Xouw]- (1.7)

Note that we have specialized to H over D, primarily due to the simplicity of its

transformation law. We also recall that

Q* = 4y, (1.8)

where 0,4 is a left-action gauge transformation by ¢. Since, our complex (1.3) is

invariant under such gauge transformations, the differential closes as desired.



60

1.3 Hpifr, (x)(Met(X))

The other well known Cartan model of relevance is the equivariant cohomology of

Met(X) with respect to Diff  (X). Its complex is given by
(" (Met(X)) @ S*(diff (X)))P T+ (1.9)

Again, the superscript of Diff | (X) denotes the projection to the diffeomorphism in-
variant subcomplex. The first term is generated by the Riemannian metric g and the
symmetric gravitinos W. The second term in our complex is generated by the vector
field @, which can be considered as a local diffeomorphism. In addition, each of these

fields is equipped with a gravity degree as shown in the table below.

Field | Gravity Degree
Guv 0
U, 1
oH 2

Table 4: The gravity degree of the fields of Hpi, (x)(Met(X)).

To avoid conflating the differential of this model with any others,* we elect to

denote it by d. We have

dguu = \II,uyy d\Ijuy = VMCI)V + VV(I);m (110)
dd* = 0. (1.11)

Note that
d* = Ls, (1.12)

30Letting typeface guide, each differential has been chosen to match the style of the associated Lie
group and manifold. Thus we have mathcal for Hg(A), mathsf for Hpik, (x)(Met(X)), and mathbb

for H((;, (M)
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where Ly is a Lie derivative of X along ®. Hence, d?> = 0 on our invariant subcomplex.
Further, as we will be working frequently with this differential and those like it,

we note that it is not blind to the raising and lower of spatial indices and obeys

dgh’ = —UH. (1.13)

1.4 Hg(M)

We will now construct the Cartan model of equivariant cohomology of M with respect

31 We shall do so in three steps, first

to G, thus providing a realization of Hg(M)
constructing the Weil model, making a suitable choice of horizontal generator, and
then conducting the Mathai-Quillen isomorphism to the Cartan model. Though our
work will be entirely self-contained, we point the interested reader to the two texts

[40] and [82] for more details.

The resulting algebra takes the form

Qg,uu = \ijj, QAM = %, (1-14)
@\I[,uzx = V,uq)u + Vl/q)ua Qw,u = _D,u(b + CI)UFa,ua (115)
Qd° =0, Q¢ = —0%4,. (1.16)

where g € Met(X) is the metric, ¥ € Q'(Met(X)) is the symmetric gravitino, and
¢ € Vect(X) is a vector field whose role and physical origin will be revealed in due
time. All other fields are precisely as they were in the twisted vector multiplet.
Further, in order to fully generalize twist supersymmetry, we will also need to pro-
vide transformation laws of (x, H, A, n) under Q. We will understand these inclusions

as adding anti-ghost multiplets to the algebra, or precisely, modules for Hg(M).

31Gticklers will worry about the non-compactness of both our groups, so we point them to [38].
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One of the most important subtleties in this story is the fact that our group G
is a semi-direct product, not a direct product. This follows from the fact that local
diffeomorphisms and gauge transformations do not commute when acting on the
space of adjoint valued differential forms. To see this, consider the group Diff(ad P)
of diffecomorphisms of the adjoint bundle. We have Diff, (X) as the subgroup of

diffeomorphisms of the form

er (2, y) — (f(2),9), (1.17)

where f is an orientation preserving diffeomorphism f € Diff { (X) and (x,y) is a local
coordinate with x € X and y is an element of the adjoint representation of G. For
the trivial P bundle, we can understand G as Map(X, i), so that an element g € G
is a family of diffeomorphisms parametrized by X. Thus, for each x € X, we have
a diffeomorphism of the fibre of ad P, g, : v — g¢g(y;x). Thus, we have G as the

subgroup of Diff(ad P) of elements of the form

pg i (z,y) — (7, 9(y; 7). (1.18)

We then take G to be the subgroup of elements in both subgroups G and Diff | (X).

Here, Diff . (X) acts as a group of automorphisms of G via

(eregpr ) (@, y) = (0r00)(fH(2), y)
= o (f M (x), g(y; fH(2)))) (1.19)
= (z,g(y; [~ (2))).

Therefore, for any g € G and f € Diff, (X), we have gpfgpg(pjfl = g, with ¢’ = f*(g) €

G. Hence, we realize G as a semi-direct product. We will see the repercussions of this
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shortly.

1.4.1 Weil Model

To begin, let us introduce the Weil algebra, which models EG. Tts complex is given
by32

W(Lie G) = S*(Lie G) ® A*(Lie G). (1.20)

We take a basis of generators {p*} for the symmetric algebra S*(LieG) and generators
{64} for the exterior algebra A*(LieG). In addition, we assign ¢* degree two and
degree one. Here, the index A is a 2-tuple of multi-indices for both the algebra of local
gauge transformations and the algebra of local diffeomorphisms. Explicitly, one may
write A = ((7i,a), (7', u)), where 77 and 7’ are indices for a basis of square-integrable
functions on X, a run over a basis of the Lie algebra g, and p run over spatial indices
ie, u=1,234. We will typically ignore the square integrable functions basis, and
thus write A = (a, u), where there is an implicit spatial coordinate dependence on
any field carrying an A index.

The generators {¢*} and {6#*} model the curvature and connection of the universal
bundle EG — BG, where BG = EG/G is the classifying space of G. Even though
EG is topologically trivial, it is not a trivial bundle over BG. Indeed, every G bundle,
say P — M, is a pullback of a classifying map f: M — BG.

In this basis, we can realize the degree one Weil differential d,y as

b =t = S0, gt = (10, 4]]" (1.21)

32The Weil algebra presented here ignores the fact that it is the Koszul algebra of the dual of
LieG. In the specific case under discussion, we are free to make such a gloss as we have a Killing

form on g, a metric on tangent vectors, and an integration over X with volume form \/§d4x for
L*(X).
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where the double brackets indicate the Lie bracket of LieG. Alternatively, we can

appeal to the structure constants of G and write
1
dwb* = " — §fIB<CA9B9C> dyip™ = — fac 0" 0", (1.22)

where contracted indices are summed over. The first of these equations is Cartan’s
structure equation for EG, as should be expected for a curvature and connection.
Note that d3,, = 0, so we can consider the cohomology H*(W(Lie G)). Tt is of course
trivial, which is unsurprising since it was constructed to model EG, a contractible
space.

Additionally, the Weil algebra is equipped with degree -1 differential operators I,

and degree zero operators L,. They act as
I0° =67,  Iw" =0, (1.23)
and
Lat® = —fac®0,  Lap®= —face". (1.24)

While unimportant for our construction, dyy, Iy and L, form a Lie superalgebra.

One relation of this Lie superalgebra is
Ly = Iydyy + dwly, (1.25)

which may also be taken as a definition of L. Indeed, we call I the interior derivative

of the Weil algebra, and L, the Lie derivative of the Weil algebra. Note that L, gives
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the (co)-adjoint action of LieG on itself, and therefore the Lie superalgebra relation
dwLy — Lydyy =0, (1.26)

is equivalent to the statement that dy is G-equivariant.

In our construction, it is illuminating to split our basis according to the semi-
direct product of G = G x Diff , (X) (for the general case of the semi-direct product
of two finite dimensional Lie groups we refer the reader to Appendix B). The Weil

algebra’s complex then splits as

W(LieG) = S*(LieG @ diff(X)) ® A*(LieG @ diff(X))
= S*(LieG) ® A*(LieG) ® S*(diff (X)) ® A*(diff(X)) (1.27)

— W(LieG) @ W(diff(X)).

With this splitting, we make definitions for the generators of each of the tensorands

above, writing

9(&,0) — ’ECL ® 17 (p(avo) — gga ® ]_7 (128)

o0 = 1 @ ¢n O =1 o". (1.29)

We will often write these fields without the tensored identity in what follows.

As explained above, G is a semi-direct product. On account of this, while the
complex W(LieG) splits into a tensor product of the Weil complexes of the factors of
G, the actual algebra does not. This follows from the definition of the Lie bracket of

LieG in (1.21) or, alternatively, from the form of the structure constants in (1.22).%

33For the correct treatment with the structure constants, we point to Appendix C, where the
simple example of X as a four torus and G = SU(2) is considered. The crux of the issue is that
the semi-direct product requires the structure constants to have dependence on the derivative of
elements of Lie G, seemingly leading to structure functions. We see this in the second and third term
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For €1, €5 € Lie G and ny, e € diff(X), we have

[[(er,m), (627772)]](a’“) = ([e1, €] + Pm(@)a - pnz(el)a7 11, m2]")
(1.30)

= ([e1, €2]* + 17 Op€y — 13 0x€l, M7 Doy — 15051y

where p, € Aut(LieG), [-,]* is the Lie bracket of LieG, and [-,-]* is the Lie bracket of

diff(X). Thus we may write the action of dyy in our split basis as

~ 1. ~ o~ ~
dwd = 3" = S[E 8" — €70, dwd" = —[E0)" — €70,0" + 070, (1.31)

A& = D — £79,€", dy®" = —£79, D" + D79, E". (1.32)

The derivative terms in both equations of (1.31) would not have been present were
G simply a direct product will play an important role in what follows.

We can also express the differential operators I, and L, in this split basis. Define

]6 = Ea](a’o), L6 = EGL(Q’O), (133)

In = T]“](o,u), Ln = U“L(o,u)- (134)

The interior derivative then acts on the generators as

I =¢*, 19" =0, (1.35)

L&t =0,  ILO* =0, (1.36)
and

18" =0, 1% =0, (1.37)

of the first entry on the right hand side of (1.30). This is clear when one has a basis of Fourier
modes, where the structure constants can be made explicit, as in section Appendix C.3.
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L&t =, LO" =0, (1.38)
and the Lie derivative as
L& = —[e,d" 4 (—1)%80¢70,¢, Ld* = —[e, " + D70,e”, (1.39)
L& =0, L. =0, (1.40)
and
Ly = =17 8,¢", Lo = —n°8,¢", (1.41)
L,,f” = —n?0,&" + (—1)deg(”)§"8077”, LUCI)” = —n?0,P" + @“6#77”. (1.42)

Of particular note is the inhomogenous (co)-adjoint action of gauge transformations
on the generators ¢ and ¢ in (1.39).

The full complex for the Weil model is built from the tensor product of the Weil
algebra and the de Rham complex of the manifold over which we are building our

equivariant cohomology. In our case, that means we want to understand the space
QM) = Q" (A) ® Q" (Met(X)). (1.43)

The first factor is generated by gauge connections A and d4A = ¥ and the second
by metrics g and dyerg = ¥, where d4 and dpye: are the usual exterior differentials on

the respective spaces. We introduce a single differential operator for this complex as

dy=dg® 1+ 1R dwyet, (144)
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so that we may summarize the algebra as

dwA, =Y, dwp, =0, (1.45)

dMguu = \I[/.Llla dM\Ijuu =0. (146)

This complex is also equipped with interior derivatives and Lie derivatives associated
to the (co)-adjoint action of gauge transformations and diffeomorphisms on M. Using

the same notation as the previous section, let us define

I. = €Iy,  L.=¢"Ly,, (1.47)

I, =n"Ix,,  L,=n"Lx,, (1.48)

where X, and X, are vector fields on M generating the gauge transformations or
diffeomorphisms associated to their respective indices. We then have the interior

derivatives on M as

I.A, =0, Ip, = De, (1.49)
Ieg,uy = 07 [e\Ijuu = 07 (150)
and
I,A, =0, Ly, = _Ug(voAu) - (VunU)Aoa (1.51)
Iyg,0 =0, IV, = =V, — Vo, (1.52)

The Lie derivatives on M are given by

LeAp, = D,u€7 Lewu - _[67 1/}/1]7 (153)
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Leg,uzz = 07 Le\p,uu = 07 (154)
and
L,A, =—-n°V,)A, — (V.n")A,, (1.55)
L?ﬂpu = —(n”Va)% - (Vw")?ﬁm (1-56)
Lng,uu - _vunzx - vunm (157)
Ly, = _UU(Vquw) - (v;ﬂ]g)\yov - (Vﬂf’)‘l’ua- (1-58)

We pause here to reivew our notation. We use V to denote a metric covariant
derivative which is metric compatible, that is, it satisfies Vg = 0. The derivative
D (or D4 when we speak with form language) will be used to denote a gauge and
metric compatible derivative, such that its action on any adjoint valued field w can
be expressed as Dw = Vw + [4, w].

As in the case of the Weil algebra, the Lie derivatives on M produce the co-adjoint

action of G. We can express this as

L.=—6. and L,=-L,. (1.59)

In order to keep our differential operators straight, we adhere to the rule the the
calligraphic £ will always refer to Lie derivatives along vectors fields on X.

With the subcomplexes and the differential operators understood, we are ready
to construct the Weil model of G-equivariant cohomology of M. We begin with the
total Weil complex as

QM) @ W(LieG), (1.60)
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which models EG x M. Our total differential is the sum of each of the factors of the

total complex, which we write as

dp =1®dy + dy ® 1. (1.61)

On its own, H(Q(M) ® W(LieG), dr) is not the cohomology we are after, since we
have not introduced an algebraic analogue to the quotient by G. To do so, we need
to restrict to the so called basic classes.

A basic class is an element w € Q(M) ® W(LieG) that is both horizontal and

tnwariant. Horizontal means that

(1® I+ Ix,e1)w =0, (1.62)

for all indices A, and invariant means that

(1®LA+LXA®1)CU = 0, (163)

for all A. We can understand basic classes as those that have no vertical components
(horizontal) and no vertical variation (invariant), where vertical is understood to be
the various directions of the group action of G.

With our full complex and differential in hand, we have the equivariant de Rham

theorem giving us the marvelous isomorphism

H(G,<M) = H((Q(M) X W(Lle G))basic; dT), (164)

where we have restricted to the basic classes of our total Weil complex.

Before we present the action of the Weil differential, we must address an issue
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with our fields. Typically, in equivariant cohomology, we take ¢ to be the horizontal
generator of the Weil algebra. In our case, ¢ splits into ¢ and 5, which are both
horizontal generators, but, as indicated in (1.39), 5 does not transform homogenously
under gauge transformations. When we identify our model of equivariant cohomology
as a background of twisted supergravity, we will want the bottom component of the
vector multiplet to transform as a healthy adjoint valued scalar field. This is the
field we wish to identify with (E Thus we have to ask, how can we cure 5 of its
inhomogeneity?

We answer the question by considering a shift of
b—d=0cb— D A,. (1.65)

Since gg, ®, and A are all horizontal, so is ¢, which will assist us shortly in our move

into the Cartan model. Further, we have

(Le®1+1® L)¢* = —[e, ¢%] 4+ 70,6 — D7 (0pe® + [Ay, €]%)

= —[E,%— (I)JAG] = _[67 ¢]

(1.66)

Thus we see that ¢ transforms homogenously under the co-adjoint action of gauge
transformations! As one may investigate in Appendix B, equivariant cohomology
with a semi-direct product group always leads to an inhomogenous action on the
horizontal generator of the normal subgroup half of the Weil algebra. It is not at all
typical that we can conduct a curing shift. The case at hand is special, since A is
an affine space and the gauge connection A transforms in precisely the correct way
to compensate for the mixed transformation of 5 This is a feature of equivariant
cohomology on the space of connections of any principal bundles with respect to the

semi-direct product of the group of diffeomorphisms of the base with the group of
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fibre preserving automorphisms.

We can also shift ¢ to transform homogeneous, and do so by taking

T c=C—€A,. (1.67)

Hence, we have the full algebra of the (shifted) Weil model as

drgu = Yy, (1.68)
dy Ay =y, (1.69)
Ay, =0, (1.70)
dripy =0, (1.71)
dp®* = —E7V, D" + BV &M, (1.72)
drdp = —[c,d] — €Dy + "Dy — E7BPF,, — B74),, (1.73)
drg = Q" =7V, (1.74)
drc =¢— %[c, c| — & Dyc — %f”f”FaP + &%, , (1.75)

where d? = 0 and equivariant classes are restricted to the basic subcomplex i.e.,

satisfy (1.62) and (1.63).

1.4.2 Cartan Model

While working with a strictly nilpotent differential has its benefits, it is possible to
trade this feature for an algebraic solution to the horizontal constraint of (1.62). We
do so in two steps. First we conduct the Mathai-Quillen isomorphism which brings
us to the so-called BRST, or intermediate model. Next, ignoring all vertical fields,

we project onto the invariant subcomplex, to arrrive at the Cartan model.
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Turning to the Mathai-Quillen isomorphism, define the operator

VIIXa®Ea+]XM®£H, (176)

factoring with respect to the total complex as in (1.60). This operator only acts non-
trivially on the space (M), and among the generators, only on ¥ and . Moreover,

exponentiating v and, using it to conjugateour differential operators, we find

1Ry +1Ix, ®1)e7T=1R Iy, (1.77)

E(1®Ly+Lx, ®1)e" =(1® Ly + Lx, ®1). (1.78)

This indicates that conjugating by e solves the horizontal condition on Q(M). We
define the new differential

de = €'dre 7, (1.79)

which we call the Cartan differential. In the given form, the differential inherits the

nilpotency of dr. Acting on the fields of the Weil model, we obtain

ng;u/ = \Ijuu - vufl/ - Vuf;u (180)
deV,, =V, @, +V, @, -V, — (V) ¥ — (VL)Y 0, (1.81)
de®" = =7V, 4+ 27V, ¢, (1.82)
deft =" =7V, E", (1.83)
and
deA, = b, + Dyc — €°F,,, (1.84)

ety = =Dp¢ + O7Fo — [¢, ] = €7 Dothy — (V)0 (1.85)
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dep = -7, —[c, 8] — €Dy, (1.86)
dec =¢— %[c, o + %f”ﬁngf,. (1.87)

We call this new algebra the BRST model. Tts complex is given by

(M) ® (W(Lie G))norizontal)” - (1.88)

namely, the invariant classes of the total Weil model complex, but now with only the
need to restrict to horizontal classes on the Weil algebra tensorand.

Next, we can further restrict our complex by projecting to the horizontal subcom-
plex of the Weil algebra. The vertical fields are identically the fields ¢ and &, and thus
any class which contains them is not an element of our cohomology. Thus we need

only consider

(" (M) ® S*(LieG))® . (1.89)

Further, inspecting (1.80)-(1.87), we can make the following observation. Considering

the particular Lie derivative

LEJrE = Ea(l X L(a,O) + LXa X 1) + 5#(1 X L(O,#) + LXu (29 1), (190)
we have
L'c'+£g,uu = —Vu&, - szf,ua (1-91)
LE+£\I[W = _favoqj;w - (Vufg)q/m/ - (vufg)q]um (1-92)
Lopc®! = —€7V, 0 + 07V, 6", (1.93)

LapeA, = Dy — 7 Fy, (1.94)



)

L'c'+£1/}u = —[C, %] - égDawu - (Vuga)wm (195)

Leved = —le,6] — € Do, (1.96)

These give exactly the last terms on the right hand sides of (1.80)-(1.82) and (1.84)-
(1.86). Hence, when considered as elements inside the subcomplex (1.89), each of the
above terms vanishes due to the invariant projection. Therefore we can freely project
the action of our Cartan differential to this invariant subcomplex leading to the final
algebra of the Cartan model. We elect to rename d¢ to Q in order to distinguish it

from the differential prior to the invariant projection. Hence, we arrive at

@g,uu - \Ij,uuy QAM — Qﬂw (197)
QvY,, =V,®,+V, o, Qy, = —-D,op+ Iy, (1.98)
Q7 =0, Qp = —3°Y,. (1.99)

The price of this projection is that we have lost the general nilpotency of de and
instead have

Q? = Ogyara, + Lo =05+ LS, (1.100)

where we recall in (1.8) that J, is the right-action of a gauge transformation by ¢, Lo
is the Lie derivative of the four manifold X along the vector field ®, and we introduce
the notation LEI)A) to indicate the gauge covariant Lie derivative of X along the vector
field ®, namely Lg where we replace all metric covariant derivatives V by the gauge
and metric covariant derivatives D 4. This differential 4s nilpotent on the invariant
subcomplex of (1.89).

All together, noting that the Mathai-Quillen isomorphism is actually a quasi-
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isomorphism, we obtain the desired result of
Hg(M) = H((Q*(M) @ S*(LieG))¢, Q). (1.101)

We note in passing that the transformation laws (1.97)-(1.99) have appeared previous
in the work of [42] (see also the work [43] for a similar construction), though in a
different context. In particular, their degree two field, denoted +* is required to be a
Killing vector field, whereas we do not assume that X has any isometries and allow
®" to be any vector field. Further, in these works, +* is constructed as a bilinear
in Majorana ghosts of a supergravity theory, whereas, as we will see, our ®# field
emerges as a ghost field for the vector supersymmetry of a twisted and truncated

theory of supergravity.

1.4.3 Anti-Ghost Multiplets

Having identified the Cartan model for the G-equivariant cohomology of M, we wish to
include the other fields in the A/ = 2 twisted vector multiplet. To do so we introduce
the four additional fields from Table 2 which divide into what we call the projection
multiplet (X\,n) and the localization multiplet (x, H). These will be understood as two
modules for Hg(M) and their names reflect their role in the Mathai-Quillen formalism.

Note that

Q|\M>:O =0, (1.102)

on the Cartan base multiplet (A, 1), ¢). On the anti-ghost multiplets, the action of Q
is introduced in (1.6) and (1.7) as a contractible pair, namely, defined so that Q on
the lower degree field gives the higher degree field, and, upon acting on the higher
degree field, is in agreement with Q2 = d4. We wish to extend the action of Q to one

of Q on the A\, 7, x and H fields such that it reproduces Q when ®, ¥ = 0, and that
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it maintain Q2 = d, + L4,

We first turn to the projection multiplet. In Hg(A(P)) we have
QAh=n,  Q=[¢ A (1.103)

where A and 7 are adjoint valued scalar fields which are commuting and anti-commuting

respectively. With such simple form, there is one obvious extension to QQ, namely
Qrx=n,  Qn=I[s,A+P7D,\ (1.104)

Indeed, this is what we do, as it satisfies (1.100). Sometimes things are simple.

Sometimes thing are complicated. The localization multiplet of (1.7) gives

QXMV = H;u/ ) QH/U/: [QS) Xul/]a (1105)

Note that both y and H are self-dual fields, a condition that has explicit metric
dependence. Hence our variation in the combined Cartan model requires a variation
of the self-dual constraint. Following the methods of Appendix D, a minimal extension

this action to Q is to take

QX;W = H;u/ - (\DU[;LXV]U)_a (1106)

where the second term on the right hand side is the required anti-self-dual part cf.

(D.3)-(D.13). Next, we take QH,, to be whatever is necessary for the algebra to
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close. Hence, defining B, = W7, x,), and using (D.14), we compute

Q*xw = QH,, — Q(B,,,)
= QH,, — (QB)” — (¥7,,B,)~ + (¥7.B,,,)"
= QHu = (VX + Vi@ xuie) ™ + (Y7 pux00)
+ (U7 (Hyo — By, )™ — (W71B,)~ + (U71.B,,) ",

- QHMV + ((VM@J)XUV + (vV@U)X}LJ)_ + (qjg[uHu]a)_ - (\I]U[M(\IJPUXV}[)))_

- (\I’U[“B;]O’)_ - (\I’U[uBJr

v]o

)+ (V7B

(1.107)
Since ¥ is symmetric in its indices, we have
o 1 o p
v [NBV}U - _5\11 [M(\Ij O'XV],D)) (1108)
and
(V7 uBuo) ™ = 0. (1.109)

Hence, we find
QZX/W = @H/w + ((VM(I)U)XUV + (VVCI)U)X/AU)_ + (WJ[MHV}U>_ + (\IJU[MB;]U)+' (1110)

Thus, the only consistent choice to maintain (1.100) is that

QH,W = 9, XW’] + @7 Do Xy + ((VHQ)U)XUV + (VV®O>XMU)+ (1.111)

- (\IIU[,U/HV]O')_ + (Wg[u(\yp[axy]]ﬂ)_)—i_a
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which leads to

QQXMV = (¢, XW] + Q7 Do Xy + (qu)‘j)Xm/ + (VV(I)U)XW

= (0 + L) - (1.112)

It will turn out that (1.111) is not only a consistent choice, but the correct choice, as

we do have
Q%H,, = (6, + LSV H,,,. (1.113)

We postpone the proof until the next section when we consider the bidegree splitting

of Q.

1.4.4 Summary

Our full Cartan model with anti-ghost modules is given by

Qg = Yy, QA, =y, (1.114)
QV,, =V,o, +V,o,, QY= —D,p+ ®°F,, (1.115)
Qo7 =0, Q¢ = —D7,, (1.116)
QA =, (1.117)
Qn = [¢, Al + 27D, A, (1.118)
Q= Huw = (Y (uXolo) (1.119)

QH/JJ/ = [¢7 X;w] + (I)UDUX;W + ((vucbg)Xau + (VV(I)U)XuU)+

o (\IJU[HHV}U)i + (\IIU[M(\IJP[UXV]]p>7)+-

(1.120)
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There are a few comments which can be made about this algebra. First, in terms of

the the other self-dual auxiliary field D, which is related to H via

HIW = F;j_u - Duw (1121)
we have
Q= F, = Dy — (Y7 1uXuio) ™ (1.122)
QD"“’ - Q(D[“w”})+ B [¢’ XNV] - (IDJDUX/W - ((VMCDU)XUV - (VV(I)U)XUM>+
o — o — ]- o
+ (V7 F )" = (W7Due) ™ + 507 WX (1.123)

We will typically use D when we are working with our action.

Turning to the closure of the algebra, let us begin by noting that both Hg(A(P))
and Hpjs, (x)(X) sit as subalgebras of Hg(X). Each can be obtained by isolating to
either side of the semi-direct product G x Diff (X). Explicitly on the fields, turning

off all gravity fields, expect the metric, we see that
Q\W:O@:O = Q. (1.124)
Likewise, ignoring all gauge fields, we have
Ql,45=0d (1.125)

This can effectively be summarized by splitting Q into bidegrees of (p,q) where p

is the gauge degree inherited from the Hg(.A) model shown in Table 3 and ¢ is the
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gravity degree from the Hpjs, (x)(Met(X)) model shown in Table 4. We can then write

Q = Q1O £ QO L Q-1 (1.126)

We denote the bidegree differentials as

QMY =g, (1.127)
QO =, (1.128)
QM =K+ Ay, (1.129)

Here Q acts as (1.4)-(1.7) and zero everywhere else. Next, d, as explained in Appendix
D, is the lift of the differential d to the total space of the bundle Q** (X, ad P) over
Met(X). It acts as d on g and ¥ as in (1.10) and (1.11) and, on our self-dual fields x

and H, it is the induced projected connection acting as
dXLLl/ = _(\PU[MXV]O')_7 dH,ul/ - _(‘IJU[[,LHV]O')_' (1130)

On all other fields, it acts as zero. Finally, in a break from the other degrees we have
K+ Ap in degree (—1,2). This splitting is given below in the nonzero transformations

as

Kipy = @7F,, , (1.131)
Ko =—-2%), , (1.132)
Kn =& D,\, (1.133)

KHuy = ©7 DXy + (V@) Xow — (V@) Xou) " (1.134)
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and
ApHu = (P x0,) )" - (1.135)

We can, on all fields except (x, H) (hence ignoring H\XH and Ap), summarize the

algebra with the relations

Q* =4y, &* = Lo|, 4y 0 (1.136)
K*={Qd}={dK}=0, {QK}=£{"[, . (1.137)

where we note that the final relation is only true on fields that transform in the adjoint
representation (thus F4 as opposed to A).

The story is far more subtle on the self-dual fields, y and H. There, we still have
Q* =96, K2={Q,d} =0, (1.138)

but now, on account of the metric dependence of the self-duality, the other relations

change. First, we see that, due to Apy, there are new relations of

{Q> AH}X/LV = (\IJU[M<\IIP[JXVHP)_>+7 A%{X;w = {AHa K}X;w = 07 (1139)

{Q,Au}H,, = (V7 (V°,Hyp) )T, AL H,, ={Ay,K}H,, =0. (1.140)
Further, we have

{9, Khxuw = (L5 x) ™, (1.141)

{Q7 K}Hw/ = (‘CEI)A)H;LV)+7 (1142)
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exposing the failure to vary the Hodge star inside the self-dual projection. This is
of course cured by the variation induced by the projected connection d differential.

Unfortunately, the cure comes with a symptom, as we have

o’ ama’ o Fa ! 1 o
X,uu = \/_Euuaﬁ < (V,9%)g BB — (VOo* +V* o )gﬂﬁ ) Xa'p + §qu VoluXvo

A A 1_ .
= (L5 0w = (L5 X0k + 5V Vsxule (1.143)

]' ]' o aa [0 Ot a (03 ]' log
’H,, = 5\/‘(7%&[3 (5(%@ V9o g — (VDY + VDY) 6P )Ha,ﬁ/ + §\I/p U, H,o

A A 1_ .
= (‘CEI) )H)IW - (‘CED )H)Zu + §\I/p \I]p[uHu]m (1144)

As we recall from our discussion of the variation of self-dual forms, the first two
terms in each computation are the variations of the Hodge star operator, and, when
combined with (1.141)+(1.142) is precisely what is necessary to change the self-dual
part of a Lie derivative to the normal Lie derivative. The addition terms are the

curvature of the projected connection which can be rewritten as

1 g g —

3V Yo = = (W (o) ) (1.145)
and

1 loa g —

SV U Hoe =~V (W Hyp,) ) (1.146)

as shown in Appendix E.1. Hence the potential problem terms are precisely the
opposite of those in (1.139) and (1.140) respectively. This is good, but there is still
need to check that the remaining anticommutators do not contribute any additional

terms. On Y, this is simple, as we trivially find

{d, K} xw = {d, A} = 0. (1.147)
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The story is not so simple on H. There we have

~ 1 1
{d K} Hyu = 50l (VPB7 + V700, = U (V@ + V)Xo (1.148)

~ 1 1
{d, AH}HMV = _§\Ija[u(vp®0 + VU(I)p)XV]p + §\I{Up(v[,uq)p + qu)[u)xu]oa (1149)

so that

{d, K} = —{d, Ay} (1.150)

We squirrel the proof of this rather nontrivial relation away in Appendix E.2. All
together, the relations (1.138)-(1.144) and (1.148)+(1.149) ensures that the localiza-
tion multiplet can be consistently included in the model of diffeomorphism and gauge
equivariant cohomology.

All together, we have shown that our transformation laws (1.114)-(1.120) satisfy
the desired relation

Q* =6, + LYY (1.151)

on all the fields of Hg(X) and its anti-ghost multiplets. We recognize this as a
nontrivial result beyond the construct of the base of the combined Cartan model.
Before moving on to the next section, let us remark on the generality of our Cartan
model. Outside of the self-dual fields, we have at no point made use of the dimension
of X. Supposing we had a smooth six manifold Y, the self-dual fields would then be
elements of Q?*(Y, ad P), so that y and H are three form fields. Taking Ay H equal
to negative the curvature of the projected connection on Q3*(Y,ad P) over Met(Y)
and KH = (Lax)T, we expect the algebra to once again close. The one nontrivial
check would be to confirm that the relation {d, K} = —{d, Ay} still holds on H. At
present we do not have a geometric understanding of this relation in four dimensions,

but it is reminiscent of some sort of Bianchi identity. This procedure could be also
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checked for any manifold of even dimension.

Returning to four dimensions, let us turn to the physical derivation of the model.

1.5 Fzcursus: Twisted Supergravity

Soon after Witten exposed the world to his topological twist, Karlhede and Rocek
identified the resulting transformation laws as a truncation and twist of NV = 2 con-
formal supergravity [47]. Likewise, but with far more complexity, the Cartan model
with the anti-ghost multiplets just constructed is remarkably found lurking inside an
appropriately truncated and twisted model of N = 2 supergravity coupled to a vector
multiplet on a symmetric gravitino background. In this section we will provide an
criminally cursory review of Euclidean supergravity as constructed from superconfor-
mal gravity and then summarize the forthcoming work with Moore, Rocek, Saxena,
and the present author in [12] to arrive at the truncated and twisted theory.?* The
structure of this maneuver is summarized in Figure 2 below. In moving from (1) to
(2) of the figure, we break the superconformal group by gauge fixing certain compen-
sating fields multiplets as well as conforming to the so-call conventional constraints.
(2) to (3) is a new to this work and full details are found in [12]. (3) to (4) is renor-
malization group flow, held as an exact process due to our QQ supersymmetry. We
will focus on the move from (3) to (4), and present the original work of specializing
to a symmetric gravitino background which, after a field redefintion, is identical to
the Cartan model of Hg(X).

We must disclaim that it is not our goal to provide any semblance of either intro-
duction or review of supergravity, so we point the interested reader to the standard

textbooks on the subject [31, 84|. Nevertheless, we will provide some light verbiage

34We note that our “twisted supergravity” is distinct from that of [11] for numerous reasons, the
most salient of is that we are working with non-dynamical supergravity fields and our actions do
not contain the Einstein-Hilbert term.
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on the matter.

0 Compensate + SU(2) VM coupling . @) . e
Conformal Supergravity — 3, Euclidean Supergravity Super Yang-Mills
(+ VM matter for G) ———— N =2, G = SU(2)

Twist Twist
t Truncate Truncate Twist

3)
Twisted Eucldiean — Donaldson-Witten

. Compensate + SU(2) VM coupling
Twisted Conformal

Supergravity Supergravity N =2 G =SU(2)
(+ VM matter for G) uv
I Uv
b IR
1
Twisted Euclidean IR
Supergravity Twisted Seiberg-Witten
Seiberg-Witten =~ —m N =2, G = U(1)
N=2 G=U(1)

Figure 2: The above diagram summarizes the relationship between the various theo-
ries. We follow the number path.

1.5.1 Euclidean Supergravity

Supergravity is the gauge theory of the appropriate supersymmetry group of the
symemtries of spacetime. Therefore, the supergravity of interest to us, namely Eu-
clidean supergravity, is the gauge theory of the N' = 2 super Euclidean group (whose
algebra is given by SEx—5 in (0.50)4(0.51)). What this means is that for every sym-
metry, including the odd ones, we introduce both a connection and a local (dependent
on spatial coordinates) transformation parameter. For a dynamical theory, all these
fields are given kinetic terms and integrated over in the full theory, but for our pur-
poses we will only consider these fields to be non-dynamical background entities.

To arrive at an off-shell formulation of these theories one starts with the super-
conformal group as opposed to the super Euclidean group.®® The even part of this

group is the conformal group SO(5, 1), which contains transformations that preserve

35We point to [27] for a modern introduction to the representation theory of the superconformal
groups.
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angles. It contains the Euclidean group R* x SO¢(4), the group of dilatations SO(1, 1)
generated by D, as well as the special conformal transformations K,,.* In addition,
we have R-symmetries, whose Lie algebra is su(2)g @ s0(1,1)g. On the odd side of
the superconformal algebra, we have the usual eight () supersymmetries as well as
the eight conformal supersymmetries S, which both can be split into left and right

Weyl spinors.?” Following [12], we collect this data together in the table below

] Symmetry \ Connection \ Parameter ‘
Translations Vielbein eu” &
Rotations Spin Connection w, ™ P
Dilatations Dilatation Connection by o’
Special Conformal Special Conformal X At
Transformations Connection "
su(2) R Symmetry | su(2)g Connection WRy'j [l
su(1,1) R Symmetry | su(1,1)g Connection A ',
Supersymmetry Gravitino L e I o
S Supersymmetry S Gravitino S, 4,8, 4 | nAmA

Table 5: The symmetry content of Euclidean N = 2 superconformal gravity.

Above, a,b are frame indices and all others are as in our original N' = 2 super-
symmetry of Section 0.2. We note that here, unlike in the case of regular N' = 2
supersymmetry, each of the parameters is a function on X, and thus, for example,
aue/‘ # 0. We also note that the metric of X is given by g, = nabeu“e,jb, where
na = diag[1,1,1,1] is the flat Euclidean metric.

In addition to the gauge connections, to work off-shell, we must add three auxiliary

fields. They are a scalar 2, a two form Tj;, and a spinor Z¢. All together, these fields

36The action of dialations take z# ~— Az for some A € R — {0} and the special conformal
transformations is the series of an inversion, a translation, followed by a final inversion and can be
loosely understood as translations of infinity. Explicitly, the special conformal transformation maps

L L2
n ! —blx
AR oy R P

37Qur intuitive understanding of the special conformal transformation as the translation at in-
finity is further enhanced by the fact that the anti-commutator of the conformal supersymmetries
is proportional K. This is a direction analogy to the fact that supersymmetry ) squares to a
translation P,. In fact, S is the conjugation of ) by the inversion operator.
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make up the Weyl multiplet, which is an off-shell representation of the conformal
superalgebra.

At present, each of the connections in Table 5 is an independent field, but this
leads to an issue with the action of spatial translations. Therefore, to arrive at a phys-
ical theory one must impose the so called “conventional constraints.” In superspace
formalism, these are constraints on the form of the supertorsion, as more thoroughly
explained in |58, 59]. For our purposes, they are conditions on the supercurvatures of
spatial translations, supersymmetry, and rotations that can be algebraically solved.
The result is that the gauge fields w,*, f,%, and S,*, SMiA are no longer independent
and become composite fields.

This concludes the depth to which we review Euclidean supergravity, and now we

turn to the truncation and twist.?®

1.5.2 The Twist

Recall from our discussion of the original twist, that we chose an isomorphism between
the SU(2)g principal bundle Pg and the SO(3) principal bundle P*. This led to the
relation

wr, 707 = wi AP oy (1.152)

This was recognized by Karlhede and Rocek as a statement in conformal supergravity
which led to the construction of the scalar supercharge Q, thus giving Witten’s original
twist a physically motivated derivation.

In [12] it is realized that one can generalize this idea to keep not only a scalar Q but

also an unconstrained local vector supersymmetry €, ;. The associated connection

38For more extensive treatment of the subject, we direct those interested in the following. A = 1
supergravity in four dimensions with Lorentzian signature was developed in [28, 44, 45, 46]. This
was was extended to N/ = 2 in the series of papers [14, 15, 16, 18, 19, 20|
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for this vector supersymmetry is the vector gravitino \I/HAA. We can reexpress the
gravitino in four components as ¥, = e, 4 A\IJMAA, which we crucially note is not
entirely symmetric at present.

Further, one can truncated the Weyl multiplet of this theory through a series of
non-trivial constraints on the gauge fields to arrive at a minimal theory which contains

a scalar supersymmtry and a gravitino. In particular, we can gauge fix the fields

b, =0, v, A8 =0, (1.153)
AP =0, =48 — . (1.154)

To ensure that these constraints are consistent, one must also show that this gauge
fixing is maintained under a supersymmetry transformation. This requires one to

check that that

Sb, =0, 5V, AP =0, (1.155)

SAT =0, 048 = 0. (1.156)

These conditions lead to a cascade of further constraints on the gauge fields, which
we will not reproduce here and instead point to [12]. All together, when the dust is
settled, everything is consistent and the resulting independent fields are the metric g,
the (not entirely symmetric) gravitino ¥,,, and the bosonic anti-self-dual auxiliary
field 7,,. In addition, the remaining supersymmetry parameters are the constant

scalar €, a vector €, a constant scalar 7y, and a self-dual two form 7]:[”.
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1.5.3 Twisted Weyl Multiplet

The twisted and truncated Weyl multiplet transformations are foudn to be

6guu = G\Ij(,uu)a (1157)
OV () = V €y + Vo€ + MG, (1.158)
_ _ 1 _
OV = V€ — V€, — §expumlf,,p — €Ty, — n[pr (1.159)
0T}, = — €V T gpe + € R(Q) 0 (1.160)
where
R(Q)p = 2T — <gp[u~7;}ra,5960 - gp[ujyfa,égéa) (1.161)
\7/Ll/,p = v[quu]p‘ (1162)

In the above, we split ¥, into the symmetric and antisymmetric parts in order to
prevent confusion with the symmetric gravitino V¥, from our construction of the
Cartan model. We further note that various rescalings have been taken to streamline
our analysis.

The goal of this section will be to show, that, after introducing BRST ghosts for the
remaining local supersymmetries, we can consistently restrict to a background where
the antisymmetric part of the gravitino vanishes. Moreover, the resulting algebra is
exactly that of Hpik, (x)(Met(X)).

We begin by introducing bosonic ghosts for the vector supersymmetry and the S

supersymmetries. To do so, we split each fermionic transformation parameter into

€' = ed" my=eny, and "7[4,;,,] = en[tw]. (1.163)
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We note that this is a restriction of the transformation laws, as we have taken the
fermionic part of each parameter to be identical to that of the constant scalar €. At
present, ®* ny and ”[J,rw] are all unconstrained ghost fields. With all the fermionic

variational parameters aligned, we can introduce the differential operators d;, which,

acting on any field A, is defined as
SA = ed, A. (1.164)

Extracting the parameter € from the transformation laws, we then arrive at’

di Gy = (). (1.165)
iV () = V@, + V@, + 9o, (1.166)
AV ) = Vs = Vi @) — %\I’J\Ifyp —= Ty = My (1.167)
AT, = V" T 0900 + P°R(Q) - (1.168)

Here, in order to agree with the Cartan model, we append this list with

4" = 0. (1.169)

With “cosmetics” aside, we begin our approach to the Cartan model of equivariant

cohomology in earnest. First, we freely set

no =0, and dyn=0. (1.170)

39This procedure may cause confusion for those steeped in the formalities of SUGRA. For these
esteemed colleagues, we present the following construction, which is functionally identical. We
introducing a Grassmann valued constant A and a constant commuting scalar supersymmetry ghost
ce. Then € is formally replaced by Ac., €' by A®*, and T]IV by Ac;fl, for a self-dual commuting two

form ghost c:[l,. We then restrict to the subspace where 1y = 0 and choose ¢, = 1. Finally, we define
the differential d; on a field A as 64 = Ad;A.
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Next to turn off the antisymmetric part of the gravitino and set ¥,,; = 0, we must

]
enforce d;¥,,; = 0, so that no antisymmetric parts sneak in through a supersymmetry
transformation. Since T][—;V] is unconstrained, the self-dual part of d;W¥(,,) = 0 can be

set to zero by restricting to a background where

1
Ny = (Vu®y =V, 0,)" — 5(%/)\1%)*. (1.171)

On the anti self-dual side, we have natural choice of

-

[wv] —

1
(Vi =V, 0,)" = S(1,70,,)" (1.172)

Here, even though T[;V] is an auxiliary field, it is not fully unconstrained and has a
fixed variation in the Weyl multiplet. Thus, in order for this background value of

T[;V] to be consistent with the theory, we also need to check that

[

1
U T 1900 + PPR(Q), . d ((VHCI)V -V,®,)” — 5(\11“9\11,,,))_) (1.173)

Beginning on the left hand side, let us interrogate the supercurvature R(Q). Exploit-

ing the full extent of the self-dual and anti-self-dual projections, we have

_ _ 14 _ _
R<Q),uu,p = (V,U«\I[VP - VV\I/HP) + 596 (gpu (jua,é - ‘-7;;,5) — Ypv (‘Zua,(S - ‘7;;,5))

1 .
= (Vu\ljup - vulll,up) - Z\/ggé (gpueuzr)\nj)\né - gpueuaAnj)\né) )

1

/9 (9ou€0o T ™ = Gou€uorg T ™) . (1.174)

= (V#\I[VP - vvq’up)i - 4

where we have use the defintional fact that

1 1
jpjzz/,p = 5‘7#1’,[7 + Z\/Ee,uz/)\nj)\np‘ (1175)
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Next, given that we are working under the assumption that are gravitinos are now
completely symmetric, it follows that J#*? will be a sum of two terms which each
have two symmetric indices. Thus, when fully contracted with the completely anti-

symmetric tensor as in the second term of R(Q),,, above, both terms vanishes.

pv,p

Therefore we have
R(Q)pp = (Vu¥, =V, 0,,)". (1.176)

Pluggin this back into d,T}, along with our choice of T}, in (1.172), we have the

left hand side of (1.173) as

dtﬂ;y} = -V, T, )+ P (Voo — VU0 )"

v]o

(1.177)
= —(\I/U[“Tf

vlo

>+ - (\I’U[uTi

vlo

)7 + q)a(vu\ljucr - vzx\puo)i

Turning to the right hand side of (1.173), keeping our lessons about varying anti-

self-dual conditions in mind, we compute

w)

_ _ 1 _
dtT[ d ((V,}DV - V,®,)" — E(qjupq]w) )
. , 1 -
= (U7, T,,)" + (‘1’ P ((qu’a — Vo))" - 5(‘1’u]p‘1’ap)+>)
) .
wa (9,0, - 9,0,) - 3(0,00,,))

. i 1
- _<\IIU[#T1/]0)+ + (\Ij [ ((VU}(I)O' - Vaéu])+ - i(qlu]quap)—i_))

1 1
+ §\I/pa(lll,wlllyp)_ + 5(\Ifwvu<1>” -U,,V,®%)"

1 _
+ 5(\IJM"VU®U —-V,°V,®,)” + 97 (V,V,, —V,V,,)

= (VLT ) = (V7 (Vy @y — Vo)) + 7 (V0 — V,0,,) "

V]
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1, -1, B
= 5 (W0 Vo) ") + (0,7 (0,1 D)

o - o -1 _
= —(VuT,,)" - (‘1’ f ((Vw‘l’a = Vo®y))” = (V) Vo)) ))
7 (VU — Vo U,0)

= — (07, T, — (07, T5,) " + B (V, Uy — V, 00) (1.178)

v]o

Joyfully, we can then strip (1.173) of the question mark looming over the equality,
having verified that the choice

T

[wv] =

1
(Vs = Vo) = 5(0,°Ty,) (1.179)

is consistent.
In summary, we have started with the algebra of the Weyl mutiplet of tSUGRA

as

di G = V), (1.180)
¥ () = V@, + Vo, @, + gumo (1.181)
AV = V@, =V, &, — %\If,/%p — Ty = My (1.182)
AT, =V T 90 + PPR(Q) (1.183)

Then enforcing the following consistent constraints,

dd" =0, Uy, =0, =0, (1.184)
1
77{[“,] =(V,®, -V, ®,)" — E(II/up\I/Vp)JF, (1.185)

- 1
j}pu] = (vﬂq)l/ - VV(I)M) - §<\Ij,up\pup>7 (1186)
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when we restrict to the symmetric gravitino background, the nontrivial part of the

algebra reduces to

Gy = Y, (1.187)
AV, =V, 0, +V,P,, (1.188)
d, " = 0. (1.189)

This is precisely the transformation laws of Hpi, (x)(Met(X)) in (1.10)+(1.11). Never
satisfied, let us see how to incorporate the vector multiplet fields into the twisted

conformal supergravity approach.

1.5.4 Twisted Vector Multiplet

It is a typical procedure to couple conformal supergravity to a N' = 2 vector multiplet,
as can be found in [17, 31, 54]. Under the truncation and twisting, and before moving

to the symmetric gravitino background, the fields transform as

§A, = €Uy + € Xop — €4 + €W\, (1.190)
S = 5,y — €D, + € (Fopy + Ny + D) — (A 0], (1.191)
5 = —€ Yy, (1.192)
5y =€ Dy — €[\, 6] — Mo\, (1.193)
S\ = en, (1.194)
X = —€(V Xo)o) — A(€EDYN* + €(F, — D) + i\, (1.195)

5D;w = e(\I/[MUDV]U) + 2€(D[;ﬂ/}u})+ + Q(E[MDUXV}U)+ — Z(E[uDy]n)+

— €[o, Xy ] + 4(€[d, Y] T (1.196)
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which is expressed supercovariantly. The supercovariant expressions are given by

D,A, =D,A, — %\I’uUXazx + %\DM — 0,00, ), (1.197)
Dy, = Dy, — %\IJM"(IA:;V + T, + D,,) + %\I/W[A, ], (1.198)
Du¢ = Dyuo + %%“wm (1.199)
DA = Dy, (1.200)
D,n=D,n— %\IJN"DJ)\ + %)\SM, (1.201)
D,Xvo = DyXoo + 2(¥u DA = V2AS) 1. (1.202)
Fuv = Fup + U, Y0 + Wpuyn + 1\If,f’\IJWA. (1.203)

2

These supercovariant objects are built by requiring that the supersymmetric varia-
tions, say, computed d(D,A) for some field A, do not contain any derivatives of the
supersymmetric variation parameters. We arrive at the supercovariant curvature in a
similar fashion. Finally, the S, and S:Z[w] are connections for the S-supersymmetry,
having split into the scalar and self-dual symmetries respectively under the twist.

They are given by

1
1= 5V W + V,0,) (1.204)

1
+
Sﬂv[

| .
o) = 5 (Volow = Volu)" + =5 (=90 V"1 + 9 Vo ¥,p°) " (1.205)

V2

As with the twisted Weyl multiplet, we have taken various field rescalings in order to
decrease the clutter in our computations. Next, let us reintroduce the bosonic ghosts

of the previous section and restrict to the symmetric gravitino background. Writing
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the supercovariant terms explicitly, we then obtain

A,u = Z/}u + (I)UXU;L - (I),un - (I)U\I/;w)\; (1206)

Ay = =Du¢ + 7 (Fp, + Doy + (Vi Xu1p) ™ + 2M Vo ®p)) ™ = oA, ¢]) . (1.207)

dip = =P, (1.208)
d\ =1, (1.209)
din = "D\ — [\, ¢, (1.210)
dixw = (V. Xule)” — A P@pDyN) T + (Ff, — Dyw) 4 2(Vi,®y) ™A (1.211)

A Dy = — (V1 Dyjo) ™ + 2(Dpth) ™ + (PL7F, )" = (6 X ] + 4 Ppu[X, ]) "
1 B U _
= 5 (W7 xop = UoPp) )"+ A (U7 (V20 = Vo))

1
- 2<(I)[;LDV}77)+ + 2((1)[;LDGXV]U)+ + ﬁ(q)[u)\su])+ - 2\/§(q)[u>\s+au]a>+

+ (D (V)7 Do X))t = 2 (B (¥4 DA — U7, DA 7)™ (1.212)

Here there are a few simplifications in dyD,, on account of now having an entirely

symmetric gravitino. First, by writing the self-dual projections explicitly, we have

- o 1 1
S+ vo =3 ’ (E(qujap - VU\Ijup)+ + _(_gp[VVA\IJO'])\ + gp[l/va]\PA)\)Jr)

V2
1 1 ,
NG (=VV,, +V,07%,) + ﬂ\/g%aﬁgap 7* " (Var ¥y, — Valy,)

. \/_\/_ 96000597 9 977 (= Gpiar VU 3 + Gplar Vo)

n (g VM s + G Vo T). 1.213
2\/59 (=9, It o Vo ¥ ( )
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In the above, each expression with the epsilon tensor vanishes under considerations

of symmetric indices. Thus, we continue to

1 1
§7%, = BN (=V7W, +V,0%) + Z—ﬁgap(—gp[uVA‘I’a]A + Goi Vo )
1 1 1
===+ _VO\IJVO' + VV\IJUO' - —5UUV)‘\IIZ, -+ 5UUVZ,\I/)\
(2\/5 4\/§> ( VoA \ y
1 1
WG (VU +V,0%) = =78, (1.214)

Noting the analogous index structure, an identical argument leads us to see that

(D, (V7,1 DA — U7, DN ) = = (B (V7 Doh — W7, D,0)) " (1.215)

1
2
Using the above identity to rewrite the last term in (1.212), we can collect all terms

of the form ~ ®V D 4\ together to compute

(o2 (o2 (o +
(diDyw)owpan = (P(Vy " DoX)) T — (P (¥7, DoX — U7 ,D,\))
= —2(V7 (P Do) T — W (P D) T

= —Q(KI/U[M((I)V]DU/\))+ + 2<\IJUM(CI)V]DU)\ — CI)UDV]A)+)+

(1.216)
= —Q(WU[M(@V]DU/\)V_ + Q(Wa[u(q)y]Dg)\ — (I)UDV])\))+
— 2(V7 (P Do — (IDUDV])\)_)+
2(‘11 [H((I) D,,]/\)) (\If [“( ,,]DU)\ — (I)UDV]/\)_)+.
These simplifications lead us to the final form of
Dy = 2(Dytbn)) ™ = [0 Xpw) = (W7 uDugo) ™ + 2(@pu Do) ™ = 2(P D)™
Jr
(975 (F + MV ®o = Vo)™ = (W0) 7)) = 401, X))

— 207 (W, DyA) T = 2 (071, (@) Dy A — B, Dy A)7) " (1.217)
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1.5.5 Unification with Hg(X)

All together, the twist Weyl multiplet coupled to the twisted vector multiplet on the

symmetric gravitino background gives us the transformation laws of

diGpw = Yy, (1.218)
iV, =V, 0, +V, 9, (1.219)
dy @ = 0, (1.220)
A Ay = Y+ 27 (Xou — You = Goun), (1.221)

dt¢u = —DM¢ + ®° (Fo'_u + Dau - gau[)\a ¢] + 2>‘<v[a®u})_ + (\ij[ch,u]p)_) ; (1222)

dp = =D, (1.223)
diA =1, (1.224)
din = [, A] + P D, A, (1.225)
diXw = F, = Dy 4 20V @) " — 4@ Dy A) ™ = (Y uxue) (1.226)

Ay Dy = 2(Dyuth)) ™ — [0, Xpw] = (W7 Dyo) ™ 4 2(D7X0)0) T — 2(PDyyn) ™
J’_
+ (‘I/U[M <Flj]a + )\(VV](I)U — ng)y])_ — (\I/p[axyﬂp)_)> — 4((13[H[1/J,,], /\])+

— 207 (W, DyA) T — 2 (971, (D) Dy A — B, DN 7). (1.227)
Careful computation reveals that this differential squares to
42 = LY + 64 s 000, (1.228)

Therefore, we have a differential that appears to be equivariant with respect gauge
transformations and diffeomorphisms in nearly the same fashion as Q, just with a

different gauge transformation parameter. The similarities between (1.218)-(1.227)
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and (1.114)-(1.120) are certainly wanting for an explanation. The answer? Namely,
Q= d,. (1.229)

Accepting this, we do away with d; and always write Q. In our view, the differences
are simple matter of field redefintions of (A,, D), and thus we will hence forth
write these fields as they appear in twisted supergravity and in (1.218)-(1.227) with
a superscript “t.” Note that this also requires us to write a similar superscript on the
field strength F4 and all gauge covariant derivatives D 4.

We will break our redefintions into two parts, first redefining the gauge field A
along with the auxiliary field D, and then redefining ). We take this perspective
in order to stress the point that each of these maneuvers is independent and might
individually provide insight into the presentation preferred by supergravity. An al-
ternatively and perhaps more revealing approach that the difference between our two
presentations of the Cartan model of Hg(X) is the result of a different splitting of
the action of G on the vector multiplet fields. Thereby considering each redefinition
independently, we draw focus on each particular changes in the group action.

Our first field redefintion is given by

A — A=A, + DN, (1.230)

D, — Dy, = D, +2(®,Dy\)". (1.231)

Crucially, the first shift has metric dependence in the lowered index of ®,. As pre-

viously mentioned, this incurs a change in both the field strength and the gauge



101

covariant derivative given by

F!, = Fu = 2X(V[,®y)) + 201, Dy A, (1.232)

D, 0 =D, 0 —®,[) 0], (1.233)

where O is any adjoint valued field. In particular, we have DY A = D4\. The resulting

transformations are then given by

Qv = Yy, (1.234)
QU =V, 0, +V, Py, (1.235)
Qo* =0, (1.236)
QAL = ¥, + X, (1.237)
QIP# - _D#¢ + ®° (F[;L + Dpu + (‘I’U[pxu]a)i) ) (1~238)
Qp = —2Y;, (1.239)
QA =, (1.240)
Qn = [¢, A] + ®*D,\, (1.241)
QX = Fb, = Dy — (PP 1uxute) ™ (1.242)
QD = (Db, — Duty,) " = [, Xow] + 2(2uDpxf))

— (VDo) + (‘I’p[M(FJ}p - (\I"’[pxyng)‘)+ . (1.243)

Note that the shift (1.230) has already solved the mystery of the extra gauge trans-

formation in d? of (1.228) above. We now have

Q=LY +6, = £ + 54000, (1.244)
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Another feature of this shift is that it eliminates all of the derivatives on ® from our
transformation laws. When we turn to the construction of our action, this means
that we can avoid introducing any potential kinetic-like terms for the background &
field, which would be of assistance in the unexplored case of a dynamical ®.

Next, we encounter the vector gaugino redefinition

;tt — ¢u = ¢L + CDPXpu: (1.245)

This brings us exactly back to the transformations (1.114)-(1.118) and (1.122)-(1.123),

which we repeat here for the benefit of the reader.

Qo =V, QA, =, (1.246)
QY =V, 0, +V, 2, QY = —-D,¢+ ®°F,, (1.247)
Q27 =0, Q¢ = —0%Y,, (1.248)
QA =n, (1.249)
Qn = [¢, Al + 7D, A, (1.250)
Q= Foiy = Dy — (Y7 1Xo) ™ (1.251)

QD = 2(Dyth))" = 6 Xl = P Doy = (V@ )Xow = (V@ )Xo)
+ (VR F,) " = (V7D,0) " + %\ija\pp[#xy]a
Hence, we come to the grand conclusion that twisted and truncated N' = 2 Eulcidean
supergravity on a symmetric gravitino background is a presentation of the base of
Cartan model of equivariant cohomology on A x Met(X) with respect to G x Diff (X)

and two anti-ghost modules! This is one of the major results of this work and perfectly

exemplifies the spirit of physical mathematics.
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Now, with that out of the way, let’s get back to the action!

2 The Action

2.1 Overview

The action of Donaldson-Witten theory Syy for an arbitrary Lie group G in (0.92)
is a scalar functional of the twisted vector multiplet field content which is O-closed
and a scalar under the Euclidean group. We can write it as a Q-exact piece plus a
topological term, namely

iTO

SUV = QVUV + — TI'FA N FA. (21)
8 X

Likewise, the IR action with an arbitrary prepotential F and an G = U(1) group can
be written

Sik = Q(Vir + Vir) + Cir. (2.2)

Our goal in this section will be to construct a new action S which is not Q-closed,
but Q-closed. Further, when we turn off the background supergravity fields ¥ and
®, we want this action to reduce to either Syy in the case of a quadratic potential or

Sig in the case of G = U(1). This can be summarized by the three conditions*®

QS =0, (2.3)
S’.F:%T()TI‘[(;&Z},?:%?OTI‘[)\QL\IJ’(I):O - SUV; (24)
S’G’:U(l),\lf,@:O = Sk (2.5)

40We note that (2.4) and (2.5) are technically mutually incompatible due to an overall scale factor
in the normalization between Syv and Sig. Nevertheless, the structure of the terms do allow our
conditions to be meaningful. For posterity, we choose to align with Sig.
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These requirements are tantamount to identifying a coupling of the super Yang Mills
theory to our twisted supergravity background Weyl multiplet. We will first present
an action S which minimally satisfies these conditions by generalizing the primitives
Viv, Vir, and Vig. Then, in our final excursus, we will do a lightening fast and
astoundingly cursory review of superconformal tensor calculus and present a second
action S* which satisfies (2.3)-(2.5). We will conclude this section by showing that
S = S'+Q(A+A), that is, the two actions only differ by cohomologically uninteresting

Q-exact terms.

2.2 Minimal Action

We define
S=Q(V+V)+C, (2.6)
where
) 1
VY= % d4{L‘\/§ |:—§F[J(F/j;j’[ + Dﬁy)xlw"} — 2F1JQ/J£DU>\J
. (2.7)
+ JT:IJK¢{1, VJXMMK - fo[)\777]1:| )
— ) 1— . _ .
V=g /Xd493\/§ {gj:fJ(F,fy’I + Dy )X = 2F Dyt

. B (2.8)
+ E}_IJKXMP’IXW’JX,I; — 2F [, 77]1} ;
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and

1 1 1 1
C=— /X d*x [que“"p"F;qué]a - §]:1JK€“VPU¢£¢1{F£ T E}—UKLEWPU%%}%%? :

247
(2.9)

Here, we use the indices I, J, K, L to denote the gauge indices. Multiple indices on a
prepotential indicate derivatives by the respective scalar. In the case of non-abelian
gauge groups they serve as indices for the generators of the adjoint representation
and, in the IR they label different abelian vector multiplets. Thus, for example, for

a single abelian vector multiplet, where the indices can be dropped, we would write
]:[J:.Fll:_:T ‘F]J:.Fllz_:? (2.10)

Let us check that S satisfies the first of our conditions of QS = 0. Since Q* = E((@A) +04
and both V and V are scalars in the trivial representation of G, it is clear that

Q(V + V) = 0. For the non-exact piece, we have

QC=9C+KC
i 1
— | d*z {Vu (]-"IJE“WBM{F&]B — gfIJKGMVa6¢£¢i¢g)]

241 Jx

) 1
+ # g d*x®7 B [—Z}_IJK(@%F,}]VFO% — 4?/’,5F&7VF§3)

1
e Frarn (3Yotiuy Fs — 20,005 Fr)

1
_EfIJKLMwiwiwfwgl/}éw}
1 1
:% TI‘|:L<I>(—.FIJK@Z)I/\FJ/\FK—I—gF[JKL¢IA¢JA¢KAFL

_6_1()~FIJKLM77Z)I AT AP At A @Z)M)] .
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Since we are working on a four manifold, there is no support for the five forms in
the final line above, and we conclude that QC = 0. Hence, we see that S is indeed
Q-closed as desired.

Turning to our two other conditions, we need to look at the explicit form of S.

Computing the action of Q in (2.6), we have

S =S — % / d'z /U (A + M)
X (2.11)

+/d4x\/§(1>"(Z(,+70)+/d4x\/§\I/”U\IJVU(TW+TW).
X X
Here,

So=9(V+V)+C
= # /X d'z\/g B?UF;/M”J - %FUFWIFi‘”’J + 4ilmF; ;D" DN
+ilmFy; D, D" + 2F by D0y — 2F rym Doy’
—2F 10, (Dux™)” + 2F 15(Dyutpyy) X
+%T:IJK771(F;)J 4 DMVJ)XHV,K_i_
+]:IJK@/)MI¢VJ<F5V’K — D)
+%\/g_lFIJKLEMVprMIwVJ¢pK¢UL

po, K L

e
+ﬁ-7:1JKL7]IXup’JX Xpo

7 —
_ifIJK(FlZ)I o Dupl)xua,JXUp,K
+iImF [, Xl X+ 2F 106" [0, A — 2F ([, 0°)

- 2]:1[7% 77][ - Q?IJHI[¢7 U]J - 2‘/__-1[)\7 [¢7 AHI - 2?[[@5, [¢7 A]I 5

(2.12)
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A = # [=FriF ™ = FraF xu™ + Froe(Wutd) x, ™"
+F 11 (WD) "X, 4 29,0 Frobe" DTN
—2F 10, DN — 2F 150, DA + 29, Fi [\, 7]][] ;
(2.13)

— 1
v/ S
" 247

[T:IJF,IUIXVUJ + 71JFV_JIXNU’J — 2]_‘—1D;ﬂ?ul — Q?ID:/%[
_ _ i~
+29;WFIDowUJ + g,ul/‘/t‘l[¢> 77][ + E-FIJKd)I/(XupJXMU’JXpoK) )
(2.14)

1 |1

ZU — E {5 -FIJKz/)aI(F;,J + D#UJ)XMV,K + QFIJKFU;LIQ/JVJXMMK
1

+ 2FIJK¢JprJDp)\K + §FIJDUX;WIXMVJ - JT_.IJDM(XJVIXMUJ)
- FIJKDu(bIXGVJXW/’K - 2fIJFopIDp>\J + QFIJwGIP\J U]J
- fIJKLwalququXlW’L — 2F;[A, Da)\]l )

(2.15)

_ 1— — y—
Z, = i —5-7:IJDUXWIXW’J + FrsDu (XL, ") + E]‘—IJKDH)\IXUVJXW’K

+2F17F, ' DN + 2F ([, m]" — 2F1[p, Do A" |,

(2.16)
— 7 —
T/W = _EfIJXupIXVP7J7 (2'17)
1
TMV = ﬁfIJXupIXVpJ- (218)

Here, to avoid needless variations of self-dual fields, we have written the last term of
(2.14) as E)y( -+), which denotes the variation, with the gravitino extracted to the

left. Now, comparing Sy to Syy and Sig, it is clear that we have the desired alignment
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of (2.4) and (2.5). This can even be seen at the level of the primitives, as

(V+V) ‘]—':%TOTY[QS?},?:%FOTr[)\?],\IJ,@:O = W, (2.19)

(V+V)| U 5m0 = Vir + Vig. (2.20)

Therefore we declare success! We also mention that S is as minimal a coupling to
supergravity as possible given our desiderata, as it has the exact same non-exact term
and we are essentially conducting a “twisted supergravity completion” of Q(V + V)
with Q(V + V).
Finally, before we turn to the second generalized action, we define the UV and IR
limits of S with
Suv = S|f:%TOTr[¢2],?:%FOTr[A2},\I/,cb:o’ (2.21)

S (2.22)

IR = S‘G:Ua),\p,cb:o'

2.3 Excursus: Superconformal Tensor Calculus Action

In Section 0.2.3 we saw that the constraint of N’ = 2 supersymmetry led to a single
general formula for the action of a single vector multiplet. With even more symmetry
on the table, there is a similar formula for the action of N’ = 2 supergravity known as
the chiral density formula. Unfortunately, it is not generally written in terms of the
vector multiplet representation, but rather the superconformal chiral and anti-chiral
multiplet. Thankfully, through the method of superconformal tensor calculus, one
can constrain these multiplets to arrive directly at the fields of the vector multiplet,
giving one a general action principle for a NV = 2 supergravity vector multiplet.

After a twist and a push onto our symmetric gravitino background, we then arrive
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at a second generalized action which satisfies (2.3)-(2.5). In this final excursus, we
will take a brief foray into the chiral and antichiral multiplets and then present the
resulting action S'. We will then, after conducting the previously mentioned field

redefinition of Section 1.5.5, show that this action differs from S by a Q-exact term.

2.3.1 The Construction

The superconformal (anti) chiral multiplet of conformal supergravity is defined as the
representation of the conformal superalgebra whose bottom component is a scalar
field that transforms into a (anti) chiral spinor under a supersymmetric variation. The
remaining fields of the multiplet are simply a result of the supersymmetric completion
of the multiplet. Prior to the twist, the N/ = 2 chiral multiplet is built from a real
scalar Ay, a left-handed spinor G', a symmetric su(2), field B, a self-dual two

form field F,

ab?

a left-handed spinor A’, and a real scalar Cy. The N = 2 anti-
chiral multiplet mirrors these fields, with each + replaced by a — and the word “left”
reflected over to “right.” Both multiplets have eight bosonic and fermionic degrees of
freedom.

After the twist, we can identify the su(2)gr indices with the su(2); and we find
that, as in the case of the vector multiplet fields, all spinors either split into a fermionic
zero for and a fermionic self-dual two form or become a fermionic 1-form. We can

collect the two multiplets as

<A+7G7G,ul/7 B+ul/7F:V7/\7/\ul/7C+)7 (223)
and
(A, Gy B, Fry Ay, C). (2.24)
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Here, all fields labeled by A, B, C, or F are bosonic, and the rest fermionic. In addition,

F~  is anti-self-dual, while G

j2%

all self-dual.

s Flfy, B, and, unfortunately for notation, B_,, are

These fields each have explicit and rather complicated transformation laws which
do not mix amounst each other, but do involve the fields of the twisted Weyl mul-
tiplet. We will, as now should be expected, refer the reader to [12], for the full
transformations, but do crucially note, for reasons that soon become clear, that C_
transformations into a total derivative plus a term of the form —%\IIUO.C_ and that
the transformation of A contains \/LEC+.

The action for the chiral or anti-chiral multiplet has a fixed form, dictated by
the chiral density formula. After the twist and truncation, but before moving to a

symmetric gravitino background, it leds us to the action

SCDF = / d43§'\/§ {L+ + L,] y (225)
X
with
Ly = Co— 0PN + 42T UH G — AA, T, T
+ 7 =t \/§ p Hv P ++uv
— iU, W, (FF + BY) —4A TH U, PT,,
1

—V2/g U T G, + 5\/5*1EMVPU\IJMWM\I$\IJ(,5A+, (2.26)
L. =C_. (2.27)

We note that the two terms in the chiral density formula (2.25) are actually inde-
pendent and we have chosen their relative coefficient by hand. Importantly, the anti
chiral multiplet density is simply C_ due to our truncation, and given our earlier

comment about its transformation, it is clear that it vanishes under integration, as
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Q(,/gC-) is a total derivative. In addition, we see that Q(—iv/2,/g\) contains the
first two terms of /gL,. Together, these two observations suggest that a minimal
Q-closed action that necessarily contains all gravity degree zero terms would take the

form

St = /Xd% [VgC- + Q(/gN)], (2.28)

where we have put our hand back in to change the coefficient of the second term.
Lamentably, this action is still written in terms of the twisted chiral and twisted anti
chiral multiplet fields. In order to convert this to an action of the twisted vector
multiplet and twisted Weyl multiplet fields, we must partake in a hearty helping of
superconformal tensor calculus. Weighty jargon aside, for the case in front of us,
this means identifying A, of the twisted chiral multiplet with our prepotential F
and likewise A_ of the twisted anti chiral multiplet with our prepotential F. Then,
maintaining QA; = QF and QA_ = QFmandates a further identification of the G
fields with vector multiplet fields, and so forth and so on into the cascade of con-
sistency conditions, until we end up with an expression for each field of (2.23) and
(2.24) in terms of exclusively twisted vector multiplet and twist Weyl multiplet fields.
This process is done with the “t” fields of the original transformation laws of twisted
supergravity, related the those of the Cartan model through (1.230)-(1.231)+(1.245).
We will therefore make use of the “t” superscript on our fields.

All told, after a light rescaling, we arrive at the following expressions

t 1 11—  ~t+.1
N = — éfIJ(FW

Dt[
247 +

72

o~ T D

i

+12

?IJKXup7[X#U7JX§g - 2?1[¢7 77][ ) (229)



~t—

1
C =g | —5Fu(F

~tp

- NT,)(F an AR 4 %]:IJDﬁVDW‘]
— 2F 0 (DY X)) + 2F 0t (DY)’ + 2FD!, D™\
+ FIJKIDLIQ/JZJ(?WV_’J AT ptevd)

+ %\/g—1fIJKL€quGwLI¢It/J¢;I¢ZJ + %]:IJW XW]JXWJ

+ 2f1J¢fL][¢tH7 A]J - 2-7:[7]777]1 - Q‘FI[)‘v [¢7 )\HI ’
where, on the symmetric gravitino background, we have
D' = Dl — S, (Fo 4 ATo, + DY)+ ~ 0,0 A
pqu)y_ ,uwl/_i M( ot ov T ay)+§ HV[7¢]7
1 g
Dj.6 = Do+ 50,70,
t _ t
DA =D,
1 g
Dy = Dyun = 59" Do A = V228701,
D} Xvo = Djxuo + 2V, DoA™ — V2AST ),

~t - 1
F;w = F;iu + \Ij[u Xv]o + §\Ij,u \III/U')\7

and in particular
~t— _ b o _ _
Fo'l/ + )\Ta'u = F,LLI/ + (\I][,U, XI/]O') + QA(V[M¢V]) )

1
D},D"\ = DDA+ JW7,[n. \].
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(2.30)

(2.31)
(2.32)
(2.33)
(2.34)
(2.35)

(2.36)

(2.37)

(2.38)

Here, since the “t” fields are the same as our Cartan model fields at gravity degree

zero, we recognize that S' as in (2.28), with (2.29) and (2.30), contains the same

degree zero part as S. Therefore, we see that S' does indeed satisfy the requirements

of (2.3)-(2.5).
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2.3.2 The Comparison

In this section we will show that S° is equal to S up to a Q-exact term, which de-
couples from the theory. Therefore, these two actions formally represent the same

cohomological field theory. Explicitly, we will find
S' =S+ Q(A + A). (2.39)
The goal of this section is to identify A and A explicitly. Diving right in, we can write

5 = [ ' [VFC. + QAN
X
=QV+V)+C+Q (/d‘*ac\/z;/\t —V) + (/d4x\/§Ct —QV — C)
X X
=5S+Q </ d'z g\ — V) + (/ d'z\/gC" —QV — C) : (2.40)
X X

Thus, rather technically, we have solved the problem for the chiral, or barred side of
the action, but we can do better. Comparing this with V in (2.8), we see that we

have term by term agreement. The difference is the entirely in the choice of t fields

and the supercovariance. We therefore write

v :/d%\/g/\t, (2.41)
X

where the hat over V' indicates that we supercovariantize it as much as possible.

Hence, we can rewrite the chiral difference as

Q ( /X dayJgN — V) — Q(V' — V). (2.42)
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We next turn to the anti-chiral, or unbarred half of the action. To avoid a sea of
indices in the rather tedious computation ahead, we will restrict ourselves to the IR
constraints of a single U(1) vector multiplet with an arbitrary prepotential. We assure
the reader that the general case follows suit [12].

To begin, expand the supercovariant terms in Cl; . giving

i

1 1
Cir- = Yo —QTF;’;FE’“V + §TDZVDW” + 27V, aVia — 27'10 Vox" + 27’@/}t VHn
or T v bt *187—Vaﬁttt
PO — DYt 5t
v o — a v v -
(W 0) S () TRE—
— — v\ — — 1 o — v] \—
707, (V@) — 2ra(VHeY)~Fl — 57(\11 Xlo) (WP )
0

+ 23_;5(V[MI>”})_¢Z¢£ — QTE(V[“(I)V])_(\I’U[MXV]U)_ - 2762[(V[#(I>,,])_]2

(2.43)

Next, we conduct the field redefintion to arrive at our Cartan model fields, and then

collecting terms in increasing gravity degree, we find

Clp_ o0~ % |:—%TF/WF/_W + ;TD D" + 27V ,aV7a — 21,V X" + 219,V
O (B DYt o T DT
(2.44)
Cir— et % [TV L P X + 270 (V @), — T (V@) 0"
+%\I/U[MXV]U(@D“¢”)_ (2.45)
Clr_ g = 24% [ 27 (@, V@) (F* + D") + 2797 x4,V X" — 2797 X, VFn)

or or y w
—1—2%@)[#( )¢M¢ - 2 (I)U(F“ - D! )Xo/ﬂwbu
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1 82 uvo o 1 o - vl T
38 261 B(I) Xau¢u¢oc¢ﬁ - 57—(\1] [MXV]U) (\DP[HX }IJ) :|
(2.46)
Ch | = o [-2r(@,9,) (07,) " — 20007(V, )
eg 3
0
+7U7,9°(V,@)x, _28_7(1),)(\11 [uxu]a)‘xp“@b”] (2.47)
z' or or
o | ZL (™ — DP) B0 — 25 B4y B (V)
TR— deg4 |:(9a( ) XopuXp da (0 [,u(v }CL)X
4= \/‘* uuaﬁ@dq)pxauxpywawﬁ} (248)
. 4 Jor, _ y
Cir— wgs 247 %(‘I’ X)) PPRTX Xy } (2.49)
1 —1a T o o
Clo s = 3 _—\/_ P @Pq)vxguxp,,xmwg} (2.50)
i [ 8
ct _ -1 B Ho HPPT Po o1 X ow Xvar 2.51
R— deg 8 2471' _12 g @ Oa? X uXp X’Y Xsp ( )

Multiplying the degree eight term above by our volume form \/§d4x, we see that

1 0°r

ra o 1
293¢ PP RTR XX XraXos A = Tt (X A ta () A At (X) A (X)) = 0,

12
(2.52)

as there is no support on X for a five form. Comparing gravity degree zero above
in (2.44) to the unbarred part of Sig in (2.12), we find exact agreement. Likewise,
we have exact agreement in gravity degree one, as seen comparing (2.45) and (2.13).
All together, the remaining difference of our action densities on the anti-chiral side is

given by

ViCln_ = QV = C = i [2r07(F), — Dy,) V77 — 207X, V'

0?
__\/g ! Téaéuyaﬁ(QXJuwl/@ba@DB + 3XM”¢‘7¢0‘,¢5)
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107 o v v

§a_q) ( uuon“ + 4DW¢“XU )

107 5 N 5 5
—}—58—(1)‘7( JWJUX“ - 4F/_u/¢HXO' - 4F0,u77buxu )

o v 1 o v
+27d XUMV,/XM - 57—(1) (VO'XMV)XH

0
+7P®7V, (XowX™") + = (Vua>q)UXUVXW}

da
! a g vl \— —\\T;Vo
T \/524 [ 27(®p, Vyja) (¥ bxo)™ - 270, (V,a) ¥ x",

— g v 87- o — 1%
+7®1, (V@) 7, x* —2%(13”(\1/ wXvlo)” X" }

9
+\/‘ { I D’“’)wap,,—Qa—ZCDUQJ%U(V“E)XW

4= \/— _(I)Pq)oeuuaﬂxpuxauwaqpﬁ]

) T, o _ y
+ \/§2T {_(\D Xulo)” PPRT X Xy 1
7 { 19%r

+ 51 —5@@)@”@76“ vl XpuXouX7a¢ﬂ] : (2.53)

where, as usual, we have split the terms in the increasing gravity degree.

Let’s begin by settling degree two, note that

1, T o e 1
= s Ao S @7 (2 et + BXputbotatis) = —cla(X AU AYAY) =0
(2.54)
Further, we have
T(DJVM(XJVXMV) = T(I)J(VMXUV)XMV - T(I)UXGMVVXMV (255)

as well as

1
——T\/_CD (VoXpuw)X" = _ZTewaﬁ(ba<vaXuV)Xaﬁ



117

I L vaBgo
= —57'6“ bo (vMXm/)Xaﬁ - 576“ °o (vMXVa>X‘75

= —/97P7 (V. X0 ) X" — /ITP7 Xou (V. X™). (2.56)

Turning to the ®F 1y terms, note that

- %%euyaﬁq)gFuuonaﬁ o %EWQBCDGFWwaXUﬁ
— @%@UF;%XW - %e*‘”‘%”ﬂy%xw, (2.57)
and
_2\@%@“@;@/}“%” = —\/E%@"FWWXU” + %%6“”‘“5 O7FupaXop.  (2.58)
This gives

1 or o v - v v 1 or o v v, v
5\/5%(1) (—F,ZﬂﬁaX“ - 4F,u1/wMXU - 4Fauwuxu ) - Eﬂ%q) [F,I,KDUX“ - 4F,j;/ Xo } .

(2.59)

Thus, we can clean up the remaining terms into

ViCln_ = QV = C = iz [2r07(F}, — Dy,) V73 — 207X, V'

107
-—®(-D v¥o v 4D v K cry
+2 Ja ( o X+ X )
187— o + uv + 5,V v
+§%® (Fuywo'x - 4Fuyw XU )
or o ”
+%(vua)q> XO'I/XM

! a g vl \— —\\Js VO
+ \/5% [—27(Pp V@) (¥ lxg)™ =270 ,(V,a) U7 X",
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or

—l—T(I)[M(V,,]a)\I/aUX“V — 28@

(Pp(qja[uxu]o)_XpM@DV}

or @

7; o v v o —
+ \/E% {%(ID Q)P(Fﬁ — DH )XUuXpV _ 28(1(1) @pwg(vua)xw

1 1 827' PET VS
_|_§\/§ w@ P% XpuXUVwawﬁ

v |oOT, _ Y
+ \/EE {%(\D [uXu]a) q)pcb’yXpMX'y 1
10°t

/L. o vo,
tor, {—g@q”’q’ et /BXp,uXauX'yaw,B] (2.60)

We will now show that the above is an entirely Q-exact expression. Starting with the

highest degree, we have

187’ . 1627— o vo
Q (E%Q)P@ ¢ ﬁXWXan"fB) - —E%q) Yo PP PTe! 5X/WXPO¢X‘Y5

107

_ 6%@”@"6"”"‘5(1% — F 4 (U7 X0y) )X paXos

107 o o -
— g%q}pq) et BXMZ/(DpQ - F;; + (\D’Y[PXO‘]’Y) )Xo-,b’

1 827' o ra
= —§%®p® qﬂe“ /BXp,u,XO'Z/X’yaw,B

or " _ 5
+\/§%Q)PQ) (llﬂ[,uxuh) XP#XU

VI Dy (261)
Above, we have used the fact that
1 1
§<I>U(eﬂmﬁxw@ﬁxwwxmwg) = 6@”1&06“”&5)(#,,@%,0&@7)@5, (2.62)
which follows from another “unsupported five-form" argument, that is, we have

0=ta(x Ata(X) Ata(x) A)
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1 1
~ /Xd4513 |:§@U(Euyaﬂxguépxl)yqﬂxvaﬁ)g) + E(I)U(GNVOCBXMV(I)PXpacIﬂX%Bwa) . (263)

Moving down to the next highest remaining degree, consider

20 " 20a2
10
4z TCI)U uuaﬁ(F+ Dau)XaLﬂpl/

107 _, e
_5(9_@ e ﬁXau(Fjﬁ_Daﬂ)'l/ju

187’

28(1
1071

" 20a
1071

" 20a
107
+ E%qﬂewﬁxwxaﬁwﬂy. (2.64)

107 vo 1 82 o _pro
Q (__‘I)Je” ﬁXauXaﬁ@ZJV) B S5 7,7 BXJ“XQ5¢”

q)oeuuaﬁ(qu[ Xulp ) Xaﬂdju
— 7 X (P Xp1p) U

@"e“mﬁxwxalgv a

Note that
1 o o o pra 1
2(1) e B(F uXa,Bwu XU;LF;ﬂwV) = -9 B(XU,U,F;ﬂwV - ZF;/Xaﬁwa)

v 1 ag v
= —2/gQ7F; " x." + 5\/§c1> Flax". (2.65)
Likewise, analogous arguments show that

1 1
_§¢UEMVQB(DO',U«XOCB¢V + XUMDQB¢V) = 2\/§¢)0DMV¢MXUV - 5\/§(DUDIW¢UXMV’

(2.66)
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and

1 g 4o
2(1) e ﬁ((‘lfp[oXu]p) Xaﬁwl/‘i‘Xou(\I] [@XB]p ) z/) = _2\/_(1) ( [uXv)o ) Xp“lﬁ

(2.67)

Here, in the final case, the potential second term on the right hand side vanishes due
to the contraction of the anti-self-dual form (WUy)~ with the self-dual y. With these,

together with another bout of index shifting, we compute

107
@( @”e“”o‘ﬁxwxag%) VI a( a)®7 x o X"

2 0a

107 _, 5 y
éa_q) ( W?%X“ +4DuuwMXa )
1071 5 y
58—@0(F+77/)0X# _4F:; Xo )

-2V —ép(‘l’”[uxz/]a)’xp“w”
107 o

- 5%(1)0(130611‘ BF uv XoaXpB
LOPT o psor was

+ 5%‘1) D7 N puX v Paths (2.68)

Here, the term in the penultimate line is precisely that required to combine with the
final term in (2.61) to give the desired F'; dependence found in the degree four term
of our difference (2.60).

Finally, consider

0
Q (TCDNE‘“’O‘BX&QV,,E) = —8—T<IDUCI> e“l’o‘ﬁﬂ)gxagvya + TCIDU\I/C,HE“”QBXQBVVE

+ T(IJMe“”O‘fB(F;B — Dag — (Y axg0) )V — T@Me“”aﬁxaﬂv,,n.

= 2v/gT®° (I, = Do) V7@ = 2/g797 0 V11

— 2/gT®, NV, a(V" " ) + 24/gT®,V,a(vly",)"
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or
— 2\/§%<I>"q>%a(vﬂa)xw (2.69)

which, after careful inspection, accounts for all the remaining terms in (2.60).

Therefore, all together, define A and A as

i or 107
A= 7i- d41:\/_ {ZTQDPXWV”CH— a—@”xpux’“’@by+ ga—(bpq)”)(puxm,x“” , (2.70)

A=V _V. (2.71)

There is no a prior reason to favor S over S*, but given the simplicity of the trans-
formations of the Cartan model fields and the fact the S terminates at gravity degree
two, we will move forward with S. Nevertheless, in Appendix , we use our knowledge
of the form of S to write the anti-chiral part of S* as a maximal exact and non-exact
splitting.

With the action behind us, the hero of our hero enters the scene...

3 The Invariants

3.1 Overview

Our ultimate goal is to build equivariant classes for Hpjg, (x)(Met(X)) which generalize

the Donaldson-Witten partition function,
Zowlg) = / [dVM]e= 50V, (3.1)

Indeed, we wish to view Zpwlg] as an element of Hgiff+(x)(Met(X)). Our new invari-
ants will then be higher degree elements of this equivariant cohomology, which can

be formally understood as differential forms on Met(X) which are invariant under the
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action of Diff . (X).

Therefore, and perhaps unsurprising, we take our new invariant Z[g, U, ®| to be
(3.1) with the action Syy replaced by Syy, the Q-closed action under the conditions of
(2.21). We will see how, in much the same sense that the original Donaldson-Witten
invariants were a generating function for the polynomial invariants, a simple chain
map argument reveals that Z[g, U, ®| generates an infinite tower of higher degree
elements of Hpjg, (x)(Met(X)).

In this section we will present the salient features of Z[g, ¥, ®], and then, after
getting our hands dirty with some interrelations between the different gravity degree

parts of our action, we will conduct an preliminary exploration of both ZI% and zZ[,

3.2 The Partition Function

Consider the UV limit of the action constructed in Section 2.2. Recall that

QSyy = 0. (3.2)

Thus, when we exponentiate the action, we have QQ-closure as

Q (e °v) = (=QSyv)e vV = 0. (3.3)

In order to obtain our desired diffeomorphism invariants, we need to integrate out
the vector multiplet fields. Thus, we have our Family Donaldson- Witten partition

function as

209, U, @] / AV e 5% (3.4)
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Note that we have here the full Syvy, not Syy.
The role of integrating over the vector multiplet requires some understanding.

Our total complex is given by

E, = S*(LieG) ® Q*(M) @ Q2F (X, adP) ® I0**(X, ad P)

® 2°(X,adP) ® IIQ°(X, ad P) (3.5)

Recall that the first two tensorands are the base of our Cartan model and are gen-
erated by (g, A,¢,V,¢,®). The next pair are the localization multiplet module
(H/D, ), and the final pair are the projection multiplet module (A, 7). We also
mention that, due to the dependence of self-duality on a metric (or more accurately,
on the conformal class of a metric), the entire complex depends on a fixed choice of
metric. Then, following the tutelage of the Cartan model, the subcomplex on which

Q? = 0 is then given by
E, = (E,)°, (3.6)

where, as before, the raised G denotes the fact that we are restricting to the G-
invariant subcomplex. The base space, over which we understand E, as a bundle, is

given by the complex
B = (S*(LieDiff . (X)) ® Q°(Met(X)))Pf+&) (3.7)

The differential for this complex is given by d of (1.10)-(1.11).

Projecting down from E, to B defines a chain map

. E;, — B (3.8)



As such, the following diagram commutes.

Q

E

T

B—4 B
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At a formal level, the map 7, is equivalent to the path integral over the twisted vector

multiplet. Therefore, the above diagram can be expressed as

/ [AVM]QA = d ( / [dVM]A) :

for all A € E,;. Hence, we conclude that

dZ[g, ¥, ®] = /[dVM]Q (e7Svv) = 0.

(3.9)

(3.10)

Since exp[—Syy| cannot be written as a Q-exact element of E,, we then conclude that

Zlg,¥,®] is a nontrivial element of Hpi, (x)(Met(X)).

Now, before expanding Z[g, U, ®| into elements of homogenous gravity degree, we

must investigate some properties of the action Syy.

3.3 Preliminary Relations

Our action Syy has the explicit form

1
Suv = Suv = 5 / d'z\/gU ALY + / d'z/g®° 7]V + / d*z/gUrI v, T
X X X

(3.11)

where we have collected terms into increasing gravity degree, so that Syy, AVY, ZVV, TUV

are each functionals of the twisted vector multiplet fields and metric only. Since the
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entire action must have total degree zero, the gauge degrees of these functionals must
be negative. We repeat the definition for each term. At degree zero, we have the

original Donaldson-Witten action, with

Syy = S§H¢ + §Pro 4 SFO _ 2mingk (3.12)

— OV + VI + V) + 5 [ TePan (3.13)

In a slight change of overall normalization from (0.137)-(0.139) to agree with (2.12),

we have

Shoc — 2g2 d*z\/gTr { QFJVFW — §D y DM — 23, (DFY) 4 + %xw[dn X1
(3.14)
SER =~z [ d'VATTY 21D, + 20007 — 20D, D] (3.15)
i = —g [ dtavaT 20, N7 20f0un]). (3.16)
Viee = —/d4x\/_Tr{ (Fl + Duw)x™ |, (3.17)
ZARES 2;2 d'z\/gTr 22D, "], (3.18)
Vi = o /X d*z/gTr [2n], )] . (3.19)

At degree one, we have

1 1 1
AEzY =53 1r {_FMPXV/J + 55 Xup —

1
n wFpaFU
22 |2 2 It g

4

+2(Du M)ty 4 2(Dy M)y = 29, (Do A7 + 2g,um(¢, Al
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Here, we recall that A} satisfies the relation

UV _ AAUV
TV = QA (3.20)

(2

where TV is the energy-momentum tensor of the original Dondaldson-Witten theory,

and thus, in our new language, satisfies*!,
- 1
dSyv = 3 /X d'z\/gUT, Y. (3.21)

At degree two we have two terms. The first is

1 1 1
0
(3.22)
The second degree two term has the form
1 (o2

T, = 8_g§Tr X1 Xvo) - (3.23)

This action was constructed by taking, as definition,
Sov = QUK + VRP + V) + 1 / TeFy A Fa. (3.24)

X

In order to streamline future computations, let us understand how the action

closes under Q. We can split the action into bidegree and write

Suv = S + SGHY +8G22, (3.25)

41Tt is not the energy-momentum tensor of the full theory of twisted supergravity
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With this, we can understand the action of QQ in bidegrees as relations between terms

of the same bidegree. First, we have
QUOISHY = QSyv =0, (3.26)

which is just the statement that Q* = §, and that Syv is gauge invariant. Next, we

have

QOISR + QLIS = o, (3.27)
which translates into

~ 1

dSyy = 5 /X d*z/gU" QAL (3.28)

aligning with our above comment that QA}Y = TV, Continuing, we find
QUIISEP + QUISHY + QIS ~o 329
This is the most complicated of the relations we will find, and tells us that

1 1 14 g g 14
(K+Am)Spv = d (5 / N LW ) B /J“W (97QZ;"Y + W u, QYY) .

(3.30)

While not eminently helpful, it is good to have the ability to write transformations

as Q-exact objects, as their expectation values will vanish. Next, we turn to

Q-1AsHY 4 OS2 — g, (3.31)
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which gives
1 ~
3 / d'z\/gU* KA = —d ( / d*z\/g (2727Y + \II“U\I/”UTE,Y)) : (3.32)
X X
Finally, in the highest gravity degree, we note

QUASEH = / d'z /g KZJV = 0. (3.33)
X

Another common computation will be Q(O’l)S%_Vl’l), so it is worth conducting now.

We have
_ 1 3
Siv") = =3 | d'ayawa, = <30 WE R, (69
So that
HS(—l,l) _ _’&2(‘/&4\? + VI}D\];O + VI}D\(;t) (335)
Term by term, we have
~2y,Loc 1 4 o o\ Tyl X Ly pt
d=w = F d'x Ei)(\/gg g )Tr[§X;wFPU] - Z_l‘lj \I[P[M\/ETI[XV]UF ]
90 Jx
1 ., A A
~ 1
d2gPro — —2—92/Xd4x£¢(\/§g“p)Tr [2AD,1,] (3.37)
0
~ 1
F = o [ atalalVaITr 20[o. ). (3.38)

which gives us the result. Now, let us return to Z[g, ¥, @]
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3.4 Expanding Z[g, ¥, D]

Due to the exponential, Z[g, ¥, ®| is a polyform in Hpig, (x)(Met(X)). We would like
to work with objects of fixed degree, and therefore, we expand the differential in

gravity degree. This takes the form

a%wA4=/EVMM1—$;”+(@5&5?—&5”)+~)eSW

= Loy — (S oy + (SHv)? = S oy + -+ (3.39)

We now come to an important point. An astute observer may cry foul, claiming
that clearly the elements of odd gravity degree vanish, as they are the expectation
values of an odd number of twisted vector multiplet fermions. For example, since the

gravitinos are background fields, we have

SR o = 5 [ dova@P @ AL @) (3.0

where AYV exclusively contains terms with one fermion. Standard lore dictates that
such terms must vanish as they are Grassmann valued, but in this case the lore is
wrong! To see this, suppose we have b; = 1, so the space H'(X) is one dimensional.
In our twisted theory, the 1 are elements of I1Q*(X), and therefore our path integral
measure contains a single zeromode 1)y associated to the generating element of H'(X).
Thus, with an understanding of fermionic integral, our expectation value will contain

a factor of the form

/[dwo]wo =1 (3.41)



130

Of course, if by > 1, there are an insufficient number of insertions to “soak” up all the
zeromodes and thus the expectation would vanishes.*? Inspecting the explicit terms
in AUV we see that the terms with y can lead to non-zero contributions when b3 = 1,
and since H°(X) is always one dimensional, the term with 1 always stands a chance
of surviving. Hence, we are not upset by correlation functions with an odd number
of fermionic insertions and happily continue on. We refer the reader to [63, 64] for a
more thorough treatment of this point in the context of the original Donaldson-Witten
invariants.

Moving along, we define

Z[g, v, @] = 7I", (3.42)
m=0

where the sum is over increasing gravity degree. Since d is homogeneous of degree

one, we conclude that
dz™ =0 for all m. (3.43)

We will soon go through the first few degrees to see how this works. Throughout, we
will make use of the fact that the expectation value of any Q-exact term is zero, that

is, we have, for all A € E,

/ AVM]QAES" = (OA)py = 0. (3.44)

42The nonvanishing of fermionic expectation values is not restricted to the twisted theory. Indeed,
the one point insertion of a free massive Majorana fermion on a torus with RR boundary conditions
(periodic in both chiralities) is nonvanishing as can be gleaned by reading between the line of Section
12.4.1 of [29].
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Consider our stated identity
d{A)yyv = (QA)yy. (3.45)

Note that d is a differential of bidegree (0, 1) while Q has pieces of bidegrees (1, 0), (0, 1)
and (—1,2). Suppose that A has bidegree (p,q). The right hand side of the above
then has an integrand with pieces of bidegrees (p+1,q), (p,q+1), and (p —1,q+2).
Naturally, since the expectation value of Q-exact pieces vanishes, we are left with a
piece of bidegree (p, ¢+ 1) and one of bidegree (p — 1, ¢+ 2). Meanwhile the left hand
side is only of bidegree (p, ¢+ 1). Therefore, the (p—1, ¢+ 2) term must vanish on its
own. From a imprecise perspective, since Q=12 is an artifact of the vector supersym-
metry (ignoring Ap), the desired statement may be an analogous to (QA)yy = 0,
but for the vector supersymmetry. Nevertheless, this ignores the fact that we have
fixed ourselves to a symmetric gravitino background and do not work with a rigid
vector supersymmetry, which is not guarenteed to exist on an arbitrary smooth four
manifold. We will see that these terms of bidegree (p — 1, q + 2) vanish in dZ% but

[m>0] )

it is not as easily seen in dZ Given the strength of our chain map argument, we

conjecture that there is a series of Ward identities which will save the day.

3.4.1 7

At degree zero, we have the usual Donaldson-Witten partition function of

Z0[g] — / AVM] €5 = (1) py. (3.46)
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The closure goes as

dZ0g] = / [dVM](—QSuy)e St

(3.47)
— /[dVM](QSUV +dSYY 4 (K4 Ap)Syy)e oY
The first term clearly vanishes. Next, using (3.28) and (3.30), we find
a29g) = | dsygQAL v + @)
X
+ / d*z /g (P7(QZ])Y) + U 0¥, (QY ) (3.48)
X

Again dropping the Q-exact terms, and summing the term of (3.36)-(3.38), we find

a20l5) = 5y [1aVM] [ e | a(Vig" 0 Tl el ~ VAT (L5 F )

~(E§VF))] = TP W T P

— Lo(\/99")Tx 2AD,1,] — Lo(/9)Tx [20]6, A]] | €

—SUV
(3.49)

Utilizing Fubini’s theorem with our vector multiplet and spacetime integral, we can
harmlessly pass the Lie derivatives Lg over all the integrated vector multiplet fields,
which become fixed values. This results in a total derivative over X which vanishes

as our manifold is without boundary. Hence, we find a remaining

1
dZ0%g) = —; /X d /G 1 (Trxso oy, (3.50)

which we recognize as stemming from the curvature of the projected connection. Our

final maneuver is to use a equation of motion of the original Donaldson-Witten theory,
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particularly the famous instanton equation F'f = 0. Thus we conclude, as expected,

that
dz"g] = 0. (3.51)

We note that we have to work a pinch harder to show this than in the original case
of Zpw/[g]. This is due to the beforementioned (p — 1,q + 2) term (here manifesting
as (—1,2)).

3.4.2 zW

The only degree one gravity field is ¥, so we have

1
ZM[g, v] = / [dVM] (5 / d%\/g\wz\}jy) e v
X

] L a e ) o
The d-closure goes as
o fron(o(3[roe)

— (% / d4$\/§\1"uy/\g’}/) (QSU\/)) €7SUV.
X

Here, we can immediately drop the terms that are Q-exact. Further, from the rea-
soning of the last section, the expectation value of ESE;VM) also vanishes. This leaves

us with

dzW[g, ¥] = / [dVM] ((K + Aw)SiyY
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- (% / d4{L‘\/§\I/HVAElY) (E+ (K + AH))SU\/) G_SUV
X

(3.54)

Using (3.28) we see that one term is the expectation value of Q(S%V1 Y S{W ), which

vanishes. This leaves us with

dzM[g, ¥] = / [aVM] (KS&‘J’” - (% / d'ay /g AL ) (K+ AH>SUV) ¢S,
X

(3.55)

At present, neither of these two terms obviously vanishes. Explicitly, they are

(ks 1) = [favag ( o [ e a8 Py = 29, (DA F,?

12087 (Dy N6, N + 20,87, A )

(3.56)

and

(SCIDV(K + Ay)SUY) = < (% /X d4x\/§\lf“”/\g;’)

1 1
X 2—92 d4y\/_Tr |: yre \Ilp[p,XV}O'(Fﬁy + DMV)

1 v
ZXW[@"%,X” ]

—297(DyA\) Dy + 20D, (97 F,H)

1
+ Z\ijg\llp#XuVDyo 4

+ AN[QF,,,, "] + 20D, D*(9°),)
+ 4[D7Y,, A][p, A] — 207 (D, \) [, ]

+ 219, <1>0D(,A]] >UV. (3.57)
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With the assurance that dZ[!! = 0, we conjecture that these two terms must vanish

due to a nontrivial Ward identity, explicitly
(KSGv Yoy = (ST (K + Am)Suv)uv. (3.58)

3.4.3 Z7Im>1]

In higher degree, we take it as a fact that
dzm>1 = . (3.59)

Explicitly computing the variation on the left hand side one can obtain an infinite
number of conjectural non-trivial Ward identities. We leave the exploration of said

identities to a future project.

4 The Future

We have provided the construction of the Cartan model of equivariant cohomology for
Hg(M) and shown its connection to truncated twisted supergravity on a symmetric
gravitino background. In addition, we provided both a UV and IR action principle,
allowing for a construction of our invariants Z[g, ¥, ®] which can be understood as
elements of Hg(X). This is chapter zero in a unwritten longer story. Herein we

present prologues to various potential sequels.
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4.1 The Observables

We expect that there will be generalizations of the “n-observable” of Donaldson-
Witten theory to family observables.*3> From this perspective the above “partition
function” plays the role of the trivial observable. So call higher degree observables
will be associated to a homology classes of the four manifold X, giving a generalization
of the Donaldson map pp. In the same way that we conceived the partition function
Zpw(g| as the gravity degree zero part of an expansion of Z[g, U, ®|, we hope to
realize the Donaldson-Witten polynomial invariants Zpw[g,p, Y] in (0.152) as the
gravity degree zero part of a similar expansion. Naturally things are not so simple.
Instead we present three different perspective on where these family observables may

be hiding.

4.1.1 Naive Family Invariants

On the gauge Cartan base fields, we have

QAu = %7 Q¢u = _Du¢ + CI)JFJ;“

Qb = =070, (4.1)

This leads us to the rather interesting “ascent & descent” equation on the original

n-observables of (0.127)-(0.131)

QO™ = dO™ Y 4 150" (4.2)

43We are in part led to this conclusion from the math literature on family invariants cf. [57, 49]



137

where 1g is the interior derivative along the vector field ®. Thus, for ¥, without

boundary, we have

QO™ (%,) = / 1O, (4.3)

n

This indicates that O™ (X,,) are, in general, not objects in the cohomology of Hg(M).

Further, recall our chain map argument in (3.9), which states that

d<A>UV = <@A>UV (44)

for any A € E,. Thus, since QO™ (%,,) # 0, we find that it is not immediately obvious
that d(O™(%,,)) = 0. Hence, due to the gravity degree two fields ® we have no reason
to suspect that (O™ (3,))yy is an element of Hpir, (x)(Met(X)). In the original theory,
prior to working with the equivariant differential d, these expectation values were seen
to be formally independent of the metric and thus elements of H, Igifu ) (Met(X)).

Nevertheless, one is naturally led to define the naiwe generalized n-observable as
0Mg, ¥, ®, %, = / [AVM]O™ (%, )e S0V, (4.5)

Focusing on the case of n = 0, we have
00 (g, 1, o] = [ [AVMIS Tl ()l . (1.6

Expanding, at degree zero we have the original expectation value of the 0-observable,

namely

0l o] = (O (polhvy = [ [aVM]STrl6 o)l (47)
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This is known to be formally independent of the metric for by > 1, and thus it should
be the case that dO©[ [9,p0] = 0, but due to the second term in our “ascent &

descent” equations (4.2), we instead find

dO©M[g, po] = 7 (Tx[th5 (p0)d(po) ) uv. (4.8)

which in principle does not vanish for all X. This, at present, remains a mystery and

stems from the bidegree (—1,2) part of our differential Q.

4.1.2 Donaldson’s Construction

Turning to an alternative direction, recall that for a fixed instanton number £, the
Donaldson invariants are counting, with signs, the numbers of instantons that can
be put on the manifold X. In the Mathai-Quillen formalism, we understand these
invariants as the integral of equivariant cohomology classes Hg(A(P)) over My, .
Therefore, if the virtual dimension of My, is greater than zero, say d > 0, the
invariants vanishes unless one inserts appropriate n-observables, so that their total
degree as elements of Hg(A(P)) equals d. We can then understand the n-observables
as objects which “lower” the dimension of the set of allowed instantons on X.

On the other hand, suppose that the virtual dimension of the moduli space M,
is d < 0. This tells us that, with this fixed k£, X will generically not support any
instanton solutions. Nevertheless, considered over a d parameter family of metrics
Y4, there will generically be a finite number of metrics in the family on which X does
support a finite number of instantons. In principle, the integral of Z%[g, U, ®] over
~vq¢ will count, again with signs, the number of instantons that exist somewhere in the
family. Thus, a family of metrics will “raise” the dimension of the moduli space.

One known sketch of the combination of these ideas is found in [24], which we
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resurrect here. Suppose that the dimension of M, , is generically d + 2n with d < 0.
Moreover, let us take 74 to be parameterized by t € B for some closed, compact

subspace B C R%. We can then define the family moduli space associated to 74 as
My, = {([A],t) e A/G x B ‘ [A] € /\/lk,gt} . (4.9)

Next, consider a generic surface ¥ in X. Any irreducible connection which satisfies

F =0 will remain irreducible on 3, and thus we have the restriction map
Ry : Mk,g — (A*/g)z, (4.10)

where (A*/G)y is the space of irreducible connections on 3. Now, our equivariant
cohomology class O (%) is pulled back from (A*/G)s via Rx. In (A*/G)s we can
choose a generic codimension two submanifold which represents O (X)) before it was
pulled back. We call the preimage under Ry of this codimension two submanifold
Vs, C My, Donaldson then defines an invariant o|vg, [X4],. .., [24]] which counts
the number of intersections My, N Vs, N--- N Vy,. It is further claimed that this
invariant defines an cohomology class of H%(Met(X)/Diff, (X)).*'Here, we see an in-
variant where both observables and families conspire to arrive at a zero dimension set
of permissible instantons on X. At present there is no known QFT representation of

this construction.

#4Technically, it is an element of the twisted cohomology H¢(Met(X)/Diff (X),II), where II is the
local coefficient system over Met(X)/Diff ;. (X) corresponding to the representation of the Diff (X)
on the multilinear, Zy-valued functions in the homology of X.
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4.1.3 TUniversal Chern Class

Let us begin by recalling the BRST model of (1.80)-(1.87). Specializing to the gauge

half of the model, we have

ngAu = % + DMC, dC,Q¢u = _DM¢ - [07 wu]a (4'11)
1
dC,gC = ¢ - 5[& C]a dC,ggb = [Qb, C]' (412)

In [6], the n-observables were collectively identified as the second Chern class of
a universal bundle. On this bundle there is a universal connection given by the
polyform

Ag=A+c (4.13)

Further, identifying the differential of this bundle as the sum of the exterior derivative

of X and the BRST differential, we have the universal curvature given by
1
Fg = (d+deg)Ag + 5lAg, Agl = Fa + ¥ + 6. (4.14)

This bundle has a bigrading of form degree and gauge degree so that [Ag] = 1 and

[Fg] = 2. We then have the BRST algebra relations equivalent to

1
(d+deg)Ag =Fg — §[Ag,Ag], (4.15)

(d+dcg)Fg = —[Ag,Fg]. (4.16)

For G = SU(2), we have the second Chern class for the universal bundle given by

1
Og = ETrIFé, (4.17)
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which satisfies

(d+deg)Og = 0. (4.18)

Spliting Og into form degrees, we have

Og = 0O — 00 £ 02 _ 0B 4 O®, (4.19)

where the choice of signs allows us to identify the above splitting as our n-observables
densities. We then see (4.17) as equivalent to the descent equation. It is important
to note that, even though Ag contains the vertical field ¢, the universal curvative Fg
is entirely horizontal, and thus each of the n-observables, when integrated over the
appropriate cycle, will give a basic class of Hg(A(P)).

For the diffeomorphism side of our Cartan model in [72, 73], and expanded upon in
[81, 90| there is also a construction the universal Chern class for a theory of topological
gravity. In these works, the gravititational fields are dynamical, which is distinctly
not the settling of our theory. Nevertheless, there may be something to learn in the

analysis. Here, the BRST transformations are now

de pifr, G = Yo — V& — V.64, (4.20)
de i, Yy = €7 (VW) — (V7)) = (V7 )V + V@, +V, 0, (4.21)
de pisr, & = P — £7(VEH), (4.22)
de pifr, D" = —E7 (V") 4+ D7 (V,EH). (4.23)

Unlike the gauge case, our coordinates g on Met(X) are not connections, so our

universal connection is more complicated. We have it as

~ 1
T, ="y da* + 3V + Vi, (4.24)
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where I'*,, is the standard Levi-Civita connection. This leads to the universal cur-

vature of
R, = (d+ depir, )T", + T\ AT, (4.25)
1
= 5 R upoda? Nda” + (PFy, — RF, 2N d” (4.26)
1
5 (Q1 + 2P o+ B8, (4.27)
where
1
P;w/\ = é(vulp)\u - vquku)a (428)
1
Q/w = _i\pw\qj/\u - (vl/q)u - qu)l,). (4'29)

Here, we see that the universal curvature has dependence on the degree one generators
of the Weil algebra. This is to be distinguished from the gauge case, where the
curvature was happily horizontal. Nevertheless, we can form the second Chern class

of the universal bundle and split it into form degree as

Opir, = R*, AR, (4.30)
0 1 2 3 4
= Ol(ai%u + Oéiiu + 0&?@ + Ol(ai%u + OI(DiZ’FJr? (4.31)

and they indeed, by construction, satisfy a set of descent equations
de,pirr, Oty = —dOfY (4.32)

and thus, if integrated over appropriate cycles, are closed under the differential dc pif., -

Nevertheless, outside of Ogﬁu, which is a well known topological invariant, each Ogilzu
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contains explicit dependence on &* and is therefore not an element of equivariant
cohomology.

Inspired by these constructions, one could attempt to construct a universal bundle
for our full Hg(M) model. In such a construction there would be observables that
mix elements of the gauge Cartan model and the diffeomorphism Cartan model. At

present this direction has not been fully explored.

>I<**************Discussion Of other Options************

4.2 Computation

Another direction worthy of immediate attention is the computation of our invariants.
This will be done in two steps. First, one must flow to the IR theory and repeat the

analysis of the u-plane of [71] for each ZEL{], where we define
Zinfy, ,9] = [ [@vale o, (133)

and likewise, split into gravity degrees as

o0

Zirlg, U, 0] =7y (4.34)
i=0

The Q closure of our theory assures us that these will equal the UV invariants of Z[".
In computing the IR correlation functions, at the monopole and dyon point, we will
need to also introduce the generalized action for a twisted hypermultiplet coupled to
the dual U(1)p vector multiplet theory that is Q-closed. Since the original action at
this these points are a Q-exact part plus a topological part, the generalization should
be obvious, but does require an understanding of the hypermultiplets as modules

over Hg(M). We also expect that the work of [50, 61] will be of use in any explicit
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calculations.

Assuming that the analysis can be carried out, the next step is to integrate ZE”{]
over n-parameter families of metrics. Suppose we have some compact, connected
subset B C R™ which parameterizes a continuous n-parameter family of metrics vp.

We can then integrate over this family as

[ areziilato). v, o) (4.35)

In this context, the W, will realize their roles as forms on MetX. We have not yet
established the roles of the degree two @ fields in the integral. For the case of n =1,
this integral can be made more explicit. Suppose we have a non-trivial diffeomorphism
f € Diff . (X) with gy = f*¢1, for go, g1 € Met(X). We then take our family v to be
a path in Met(X) between gy and g;. Our family invariant associated to this path is

then

[zl w5 [ [ atevaiiog@mer )

1 o (4.36)
=3 [ [t a 2

Given our construction of the integrand as a equivariant class in Hpi, (x)(Met(X)),
this should be independent of all metric data, namely the choice of v, and the choice
of go and ¢, so long as go = f*g;. Further, we expect that dependence on the choice
of diffeomorphism f is only up to choice of which component of Diff  (X) it is from,
hence (4.36) should be an invariant associated to elements of m(Diff | (X)).
Together, these two steps of flowing to the IR and integrating over a family of
metrics will certainly meet with complications, but the results could potentially yield

exciting new classes of invariants which will help reveal the relatively unexplored
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topology of Diff  (X). It would also be of further interest to explore the connection of
these invariants to automorphic forms, as it is known that there is a deep connection
between the original Donaldson-Witten invariants and mock modular forms [13, 51,

60].

4.3 Wall Crossing

The original Donaldson-Witten invariants experience a phenomenon known as wall-
crossing. This occurs for b = 1, where Zpw/|g] is only piecewise constant on Met(X).
Generically, along a one-parameter family, there will be a point g, where there is an
anti-self-dual reducible connection, which will lead to a singularity in My, 4, . Such an
occurrence will lead to a change in Zpwl[g] on either side of g, in the family.

It is likewise the case that, for by = n, a generic n-parameter family of metrics will
have a finite number of points on which there is an anti-self-dual reducible connections.
Thus, if one fixes a n — 1-parameter family and varies the whole family along a
transverse path, one will experience wall-crossing in the invariant Z[*~U integrated
over the n — 1-parameter family.

In the original analysis, wall-crossing is less a bug and more a feature being very
helpful in both understanding and computing the Donaldson-Witten invariants. We

hope that, if this higher order wall-crossing exists, it is likewise a boon to the theory.

5 Conclusion

We have journeyed through the wild world of four manifolds, delved the depths of
supersymmetry, and gathered up arms of equivariant cohomology and supergravity to
wage battle against the unknown. Nevertheless, this is just the beginning and there

is much work to be done and far more questions than when we started. Still, one
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question shines above all other: what is the role of smooth structures in physics?
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Appendices

A Conventions

A.1 Form Conventions

For a given p form A, € QF(X), we write it locally as
dx! N - A dxtv. (A.1)

Taking B, € Q%(X), our wedge product of A, and B, is given by

1
A(p) A B(q) = ZT(]!A[M“‘#pBlﬁp-%l“'Mvaq]dxm A - odxtr A dxPett Ao A datrta, (A2)
This defines
(p+q)!
(Ap) A Bg)) s ctippip o = WA[MI'“NPBN%LI‘“NHLI' (A.3)

The exterior derivative on A, gives a (p + 1) form dA(,) € QP1(X), given by

1
dAp) = _la[ﬂlAuz"'Mp-H]d‘rul Ao Ndxt A datet (A.4)
y
1
= ( T 1)| (dA(P)>M1"-Mp+1d'TM A AdxPe A dxtett (A5)
P !

The Hodge star on A, gives a (d—p) form, where d is the dimension of our manifold,

almost always taken as d = 4. We have

*Ap) = !\/@5“1..%%“...MdA“l"'“"dx“P“ Ao Adatd (A.6)

1
p!(d —p)
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Hence we obtain

1
Ay ANxAg) = o — Ay, A fgd (A7)

With these conventions, the various contractions of the field strength F4 € Q*(X, ad P)

we encounter satisfy

L

FyAN%Fy = ~F, F"/gd'z, (A.8)
1

FyNFy= ZeWWFWFPUd%, (A.9)
1

FiANFf= F“” Fi/gd'z, (A.10)

FiNF; = ——F“”F oA/gd . (A.11)

Further, for x € TIQ2*(X,ad P) and D € Q2" (X, ad P), we have

1
XAD = EXWD‘“’\/Ed‘lx. (A.12)

A.2 Spinor Conventions

Our conventions for raising and lowering su(2), and su(2)_ indices follow the North-

West South-East conventions. Hence,

M = 4B )\p, A= Meup, (A.13)

—A § ~ <A

AN =B, M=\ eip (A.14)
where €45 = €48 = —€ip = —EAB, and €15 = +1. In particular, note that this means

that, for any spinorial objects A and 1, we have

’(/)AAA = ’QDAEABAB = —1/JA€B,4)\B = —GBA1/JA)\B = —@/JB)\B = —’g/)A)\A, (A15)
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and thus

My =0. (A.16)

In addition, there are a number of useful identities, such as

Beop = 04, Beap =2, and eBeop = 6408 — 5565, (A.17)

Turning to the construction of our intertwiners, the standard Pauli matrices are given

by
7'1 = , T2 = s 7'3 = . (A18)

We then write 7 = (11,72, 73), to denote the Pauli vector. We can then define the

Euclidean o-matrices as
(0" = (F,—il)"?  and  (Gu)ip = (7,ila) ip- (A.19)

These matrices serve as intertwiners between the bi-spinorial representations and
vector representation of SO(4). Since the majority of our analysis involves curved
space, we choose to define these matrices with the frame index a, but when we are
restricting our analysis to flat Euclidean space, we often abusively write the spacetime
indices u, v, &c. When we are indeed working in curved space, we will often suppress

the vielbein 1-form, and define

= eu"(0a) .7 and (0u) an = €u"(0a) ip (A.20)
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These o matrices satisfy the relations

aa?ib + O'ba:a = 25ab]127 5a0b + 5b0'a = 25ab]127 (A21)
(0.) =G0, (694 = (M)A, (A.22)
(0a)*? (Ga)ep = 20p05 (A.23)

At a notational level, we can use these o-matrices to change between the frame indices

a and the two component indices. For some object V, we have

1 ' 1
)44 and likewise V)

Vo= 5Vaalo = 50" aiVe (A.24)

This normalization is used exclusively in the Excursus of twisted supergravity, as it

allows for the simple relation e/, AefB =% 5/’5;. In Section 0, we change indices without
the prefactor.

We also have the self-dual and anti-self-dual projectors, defined by

1 e 3 ~a
("5 = 5 [(0*)*#(3") s — (") (5") s - (A.25)
~a 1 ~a ; -~ a ;
5") 4" = 5 |6 ac(0") 7 = (340 (0")] (A.26)
which have the explicit form
0 it —ir? ittt 0 T O —
b —i73 0 iThir? b —ir3 0 Tt —ir?
O'a — s aIld W =
it? —ir! 0 i3 it?  —ir! 0 —ir3
—itt —ir? =it 0 it iT? i3 0

(A.27)
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B Toy Weil Algebra

Here we present a simplified version of the Lie superalgebra of the Weil algebra,
considering a semi-direct product of two finite dimensional Lie groups. Let G be a
finite dimensional Lie group, with normal subgroup G, and subgroup G.*> We then
have the homomorphism ¢ : Gy — Aut(G) taking h € G, to ady, i.e., ¢(h)(g) =
hgh™! for ¢ € G;. We can then construct the semi-direct product G; x Gy, whose

group structure is given by

(91, 11)(g2, ho) = (g1h1g2h1 ", hihs) (B.1)

In this group, the identity is simply the tuple of identities from the original Lie groups
i.e., (e1,ez). Inverse are as (g, h)~! = (h~tg7'h, h™1). In addition, the splitting lemma

indicates that we have the short exact sequence
1—>G1—L>G1NG2L>G2—)1, (B2)

and a group homomorphism ¢ : Gy — G; X G5 such that m oy = idg,. Explicitly, we
have «(g) = (g, e2), (g, h) = h and ¥(h) = (e1, h), so that we may write ¢(¢(h)(g)) =
d(h)u(g) (7).

Let Lie(G1) = g1 and Lie(G3) = g1 be the Lie algebra of G and G5 respectively.
The Lie algebra of our semi-direct product G x G5 is govern by the derivation d¢ :
g2 — Der(gq) with explicitly form d¢(8)(a) = ad g(a) = [B, @] for a € gy and 5 € go,
where the Lie bracket here is the one inherited from Lie(G) = g, which contains both

g1 and go as subalgebra. The fact that this is a derivation follows from the Jacobi

45This mimics our case of G; = G and Gy = Diff | (X), since for f € Diff, (X) and g € G, we indeed
have fgf~! = f*(g) € G i.e., G is a normal subgroup of the full group of G x Diff  (X).
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identity. The Lie bracket on Lie(G; x G3), distinguished from that of g by a double

bracket, is then defined as

(a1, B1), (a2, B2)]] = ([, o] + dop(B1)(2) — dp(Ba)(ar), [Br, Ba])
= ([ou, ag] + [B1, 2] — [Ba, a1, [P, Ba]) -

(B.3)

Given that (G is normal in G, we have [5,a] € g; for all @ € g; and § € g,. Note
that the above Lie bracket is indeed antisymmetric and satisfies the Jacobi identity
as a consequence of the Jacobi identity on each factor.

Let us consider a split basis of Lie(G; x G3). Suppose that dimG; = N; and
dimGy = N; and that {tfll)} and {th)} are bases of each g; and g respectively, where
a=1,...,Nyand : = Ny +1..., Ny + No. We will always use indices a, b, ¢ for g;
and 14, j, k for go. Since both G and G5 are subgroups of the abstract Lie group G,
we can use the structure constants of Lie(G) to define those of our subalgebra. This

gives

(10, 49) = £t (B.4)
2 2 2
12, 69] = fi42 (B.5)

where f,;¢ and f;;* are defined in G restricted to the relevant indices for Gy and Gb.
Next, we can specify a basis {T4} of g1 x g2, as 1 < A < Ny we have Ty = (¢}, 0)

for1 <A< N; and Ty = (O,tf)) for Ny +1 < A < N; + N,. Then we can write

[T, Tg)) = fas“Tc (B.6)

where fap® = —fpa® and fi;* = fo/ = 0foralll1 <a < Nyand Ny +1<i,j<

N1 4+ Ns. This last constraint follows directly from the fact that G is normal in G.
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Note that when f,;® # 0, this structure is distinguished from a direct product, as
such structure constants lead to the semi-direct product terms in the definition the
Lie bracket on Lie(G; x G3) above.

Our expression for the structure constants of Lie(G; x G2) is a little opaque,
and thus we give it a partial exegesis. The cases where 1 < a,b < Nj, namely
the indices for the g; subalgebra, and we have [[T,,T,]] = fu°T.. Likewise, for
Ny 41 <14,5 < Ny + Ny, we have ([T}, Tj]] = f;;5T).. Were this a direct product of Lie
groups, this would be the whole story, but we have a semi-direct product, so there
are non-zero structure constants with mixed indices. Indeed, we have

(1T., T3] = [[(¢9, 0), (0,67)]] = (=[], 0) = (= fiatD,0) = fuT. #0, (B.7)

a 7 i Y va

where we have used the fact that [gq, go] € g1. Likewise, we have [[T}, T,]] = fi.T. # 0.
Next, let’s turn to the Weil algebra W(Lie(G1 % G)). It is defined as the Koszul
algebra of the dual of Lie(G; x Gs), that is,

W(LIG(Gl X GQ)) = S*((L|e(G1 X GQ))V> X A*((Lle(G1 X Gg))v) . (Bg)

Civen our basis {74}, we have an induced dual basis {74} through the Killing forms
on each algebra g; and go. In order for this to be a full basis for (g, x g2)Y, we
require the existence of a nondegenerate Killing form, which requires that g; x go
be semisimple. We can then take generators of this algebra as {¢“}, the degree two
elements of the symmetric algebra, and {6}, the degree one elements of the exterior

algebra. With these generators, we have the Koszul operator dy, as a degree one
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differential on the algebra VW, defined as
1
A" = ¢ — §fBCA9390dW¢A = —fpc"07¢" (B.9)

where as always, repeated indices are summed. Taking the split basis, noting when

the structure constants vanish, we have

1 , : S B
dyw 0 = ¢ — 5be“9690 — fi.0'0° dwt" = ¢' — §fjk1970k , (B.10)
dwo" = —foc"0"0° = fu"0"¢" — [ 076 dwo' = —fi'0"¢" . (B.11)
Note that d3,, = 0 and W has trivial cohomology. This reflects that fact that W
serves as a model for the deRham complex of E(G; x G2), which is contractible by

definition. In order to model E(G; x G)’s free G x G4 action, we require a degree

-1 differential operator /4 whose action is defined as
1208 =648, 1,0°=0. (B.12)

We can further define a degree zero differential operators L, which encode the in-
finitesimal action of G7 X G on (g1 X g2)” through the co-adjoint representation.

Here, we define it through L4 = Ixdyy + dw 14, giving
L0 = —fac0 , La¢P= —facPe , (B.13)
or, in the split basis, as

Lot = —fu'0° — ful0" . Lad® = —fo0" — fu'd" (B.14)

L' =0, Lo¢' =0, (B.15)
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and

Lﬂa = _fl,caec y Lz¢b = _fica(bc ) (B16)

Lt = —fu70% Li¢) = —fal¢* . (B.17)

Above, the mixed structure constants in L,0® and L,¢" are crucial to our discussion
as they encode the difference between a semi-direct product and a direct product
action. When we come to observables, we will see how these terms spoil the invariant

polynomials of g;, namely preventing them from being basic classes.
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C Ex. X=T!and G =SU(2)

Here we work through the explicit example of the Weil algebra in this paper for the

case X a four torus and G = SU(2).

C.1 Diffeomorphisms

Let X = T* = S! x S! x S! x S! be the four torus (with the standard smooth
structure). We are interested in the space of square integrable functions X, namely

the space L*(X). We have a basis for this space given by
(C.1)

where 71 € Z* is a four vector of integers and 6 € X are points on the four torus. Any
function on X can then be written as a linear combination of the f,s, i.e. for any

function F': X — C, we have
F(0) =Y Fafa(6), (C.2)

with F; € C.

Next, we wish to consider the space of orientation preserving diffeomorphism on
X, denoted by Diff, (X). This space has a group structure given by the composition
of maps. Locally, the Lie algebra of Diff(X), denoted by diff(X), is the space of
all vector fields on X with Lie bracket given by the Lie derivative of vector fields.

Explicitly, a basis for diff(X) is given by elements of the form

N (0) = fal0) 500 = e 500 (C.3)
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We can then write any diffeomorphism 7 as
4
n(0) = g () (C.4)

o=1 nez4

with nZ € C. At times we will have occasion to write

n(0) =Y nge?, (C.5)

nezZ4

where we have conducted the sum over the Fourier modes. Employing summation

rules, we can then write n = 170,. The Lie bracket of diff(X) is

- it 9 9 l,o
s M = 7 (s = ) = 3 s gy (€6)
(Lo)

Thus we can read off the structure constants as
fman' ™7 = 05 5 (Mu6”y = nu0%,), (C.7)

which are antisymmetric in the lowered indices, as expected.

C.2 Gauge transformation

Let us turn to gauge transformations. Take our gauge group as G = SU(2), with a
basis of its Lie algebra su(2), as

T, = —=T,, (C.8)

where 7% are the usual Pauli matrices. With this normalization of our basis, we have
the relations

[Ta, Tb] = éabcTc, (Cg)
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where €, is the usual antisymmetric tensor with e;9% = +1.

Now, consider the principal G bundle P — X. We define the group of gauge
transformations G as space of fibre preserving automorphisms of P. Locally, we have
Lie G as the space of maps from X to usual Lie algebra of su(2). Thus, using the
basis for L?*(X) from the last subsection, we have a basis for Lie G given by elements

of the form

Ty () = fa(0)T, = €T, (C.10)

e(0) => > T (0), (C.11)

a=1 gez*

with €% € C. As in the case of diffeomorphisms, we will on occasion will conduct the
sum over Fourier modes and write €%, so that € = €*T,, where, again, we implicitly
sum over a. The structure constants for the Lie algebra of gauge transformations
follow directly from those of the Lie algebra of the gauge group including the effect

of the fzs. We have

Faayomn & = €05 - (C.12)

C.3 Diffeomorphisms & Gauge transformations

Next, we want to take the semi-direct product of Diff { (X) and G acting on the space
of adjoint valued differential forms on X. To see that we want a semi-direct product,
take g € G and f € Diff, (X) and consider their actions on some ¢ € Q°(X,ad P).

We have, by definition,

(g0 @)(x) = g(x)p(z)g(x)™ and (fo¢)(x) = (f(2)). (C.13)
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Thus

and
(go(foo))(x)=go(d(f(x)) = g(x)d(f(x))g(x)™", (C.15)
which together give
folgef™)=Ff9). (C.16)

This tells us that we do indeed wish to consider G = G x Diff . (X). In the local Lie
algebra description, this semi-direct product is specified by a Lie algebra homomor-
phism p : diff(X) — Der(Lie G), where the target is the space of derivations of Lie G.

Given (e1,m), (€2,12) € Lie G & diff(X), our Lie bracket is given by

[(€1,m), (e2,m2)] = ([e1, €2] + p(m)(e2) — p(m2)(€1), [11,M2])- (C.17)

The particular homomorphism we are interested in is simply p(n) = 7°0,, where 7

acts as a vector field on gauge transformations. We can then write

[[(e1,m1), (€2, m2)][= ([€1, €2] + 17 Or€2 — 5 Dpex, [N, M2)). (C.18)

We would like to identify the structure constants of our Lie bracket. These will be
the same as those of the previous two section along with additional contributions on

the gauge transformation side due to the semi-direct product structure. One finds

[(Tt,a)s M) s (L by M )] = Z <€abcéé+m + imu(Sg,md{j - mu(sfﬁurﬁ a
(€:0),(F 1)
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idf‘i’+ﬁi/(m;l60” - ngjéo,u)> (T(Zc)7 77([/,0-))

(C.19)

Or, with an unpalatable number of indices,

Fia iy @ wyy OO = <€ab05f‘i+rﬁ + im0 505 — N0 706,

n

Z’ Y Y
1051 40 (0,07, — m3,0 u))

(C.20)

C.4 'Weil Algebra

With an explicit understanding of Lie G, we now turn to constructing the Weil algebra.

It is defined as
W(Lie G) = S(Lie G @ diff(X)) ® A(Lie G @ diff(X)). (C.21)

We can take generators of this algebra as the degree two elements of the symmetric
algebra {¢"} and the degree one elements of the exterior algebra {#*}. Here, the index
A is of the form ((77,a), (7', 1)), where the first tuple specifies a gauge transformation
basis element and the second specifies a diffeomorphism basis element. In order to
specify a complete set of generators we need not let A run over all such indices, and

instead take the split basis. We define

9((:0),(0.0) — () & 1 S0((7?@),(070)) — ¢(ﬁ,a) ® 1 (C.22)

9((070)7(777“)) — 1 ® f(ﬁvu) 90((070)7(737”)) — 1 ® (P(ﬁ,,u) (023)
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where (0,0) indicates zero in the respective direct sum index. To avoid clutter, we
make a redefinition of notation, so that now A runs over (77, A) with A running
over all spatial indices = 1,2,3,4 and gauge indices a = 1,2,3. Additionally, we
will frequently suppress identity tensorands. With these indices, we can rewrite the
structure constants of Lie G as

faB® = f(ﬁ,A),(m,B)(ZC)

= (eay"04650C + im, 6685058 — in,, 045189 SC + im,, 6" 54587 — in, 84845 57)55

i
(C.24)
Our Weil differential act on the generators as

dwt = ot = 0,00, dwe =[] (©.25)

Further, we have the degree -1 differential operator I, as
I0° =68  I,o% =o0. (C.26)

and the degree zero Lie derivative L, as

Ly = Ipdyy + dwly. (C.27)

We wish to identify the action of dyy, I5, and Ly in this example. Starting with

the Weil differential, we have

B . 1 B _ .
dwf(”’“) _ (p(mu) _ 5[[97 9]](7%#) — plin) _ Z fAB(nvu)gAgJB (C.28)
AB
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(C.29)

(C.30)

(C.31)

where in the last line we have resummed the second term in the penultimate expression

and used the fact that the £s anticommute. We can also recognize in the above

expression the fact that i(77 — m), is value of 0, on fz_z. Therefore, we sum over 7

on both sides and write

dy&" = OF — £70,E".

Similarily, we have

@™ = (9,5 "

and again we can sum over n on both sides to write

dy®" = —£70, D + 7Y, .

(C.32)

(C.35)

Turning to ¢ and ¢, we must be careful with the extra factors in the structure con-

stants. We find

_ . 1 ~ - 1 =
(Aa) _  (Fa) _ = (fa) _ 4(fa) _ = (7,a) pA B
dwc'™ = ¢ 2[9,5] =¢ 5 E fag'"™6%0

_ (b(ﬁ,a) . % Z 6bcac(m,b) C(ﬁfﬁz,c) . % Z myf(ﬁfﬁz,a)c(rﬁ,a) + 1 Z mgc(rﬁ,a)g(ﬁfﬁl,o)

mbc



_ ¢(ﬁ,a) _ % Z 6bcac(m,b)C(ﬁfﬁl,c) . Z f(ﬁ m,o )Zmac(rﬁ a).

—

"
mbc mo

Here we can sum both sides over n and rewrite the result as

1
dyc” = ¢* — 5[6’ c|* — €70,

Next, for ¢ we have

dwo ™) = —[6, ¢] "
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(C.38)

(C.39)

:_§ 6bcac(m,b (7—m,c) _ZE mgé-n m,o) . (m,a) —|—Z§ myc (ma (R—m,o )

pbe

where again we sum over n on both sides to obtain
dw¢" = —[c, | — §70,9" + ©70,c.
Next, the interior derivatives are easily computed as

[(ﬁ,a)c(mm = 5?527 [(ﬁ’,,u)é(my) = 572‘?1557

I(T‘i,a)(b(m’b) — O, ](ﬁ/hu)q)(m,u) =0.

(C.42)

(C.43)

(C.44)

Finally we turn to the Lie derivative. Since I, yields either zero or delta functions,

and dyy vanishes on delta functions, we only need to compute I,d)y on our generators

to understand the action of L. We have for the gauge indexed operators

L(ﬁ,a)c(ﬁl’b) _ Z €ac C (m—1i,c) + Zg(m o Znyéb L(ﬁ,a)g(ﬁiﬁ) =0,

c

(C.45)
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Laad™ = =) e ¢ +Zzng MO Laa®™ =0, (C.46)

c

and for the diffeomorphism indexed operators,

L™ = —i(m — 1), L 0 € = —i(m — i), £ 25 mg
(C.47)

L(ﬁ,u)qb(ﬁ’b) = —i(m — ﬁ)“gb(ﬁl—ﬁ,b), L(ﬁmq)(rﬁw) = —i(m — ﬁ)uq)(m_ﬁ’y) + Z Cb(ﬁ_ﬁ’a)mgéz.
(C.48)

In order to return this to a more palatable form, let us contract each Lie derivative

by the associated degree one generator, and then conduct the sums over both 7 and

m. Allowing ourselves an abusive, but, at this point, well understood notation, we

have
Lec® = ¢"(Loc®) = —[c, ]’ — €70,¢, L&t = c"(Ly&") = 0, (C.49)
Le¢® = c*(La¢") = —[c, ¢]" + ®70,¢", L.O" = (L") = 0, (C.50)

and
Lec” = &7 (Loc") = =€70,¢", Ll = €7 (Lo€") = —2670,¢, (C.51)

Leg® = €7 (Ly¢") = —€70,4°, Le®" := 7 (Ly®") = —£70,0" + ®70,£".  (C.52)

Note that

QALAQOB = dngB. (053)
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D Variation of Self-Dual Fields

Suppose that we have a (anti-) self-dual field w € Q**(X), such that
w==xx*xw, (D.1)

where here and throughout the section the top sign is for self-dual and the lower for
anti self-dual w. Under a change in the metric ¢ — g + dg, we have w — w + d,w. If

we want to maintain the duality condition for the new perturbed metric, we require
dow = £6,(xw) = £(0x)w £ *(Jyw), (D.2)

or, equivalently, that

%(1 T *)(5gw = :I:%((Sg*)w. (D.3)

Hence, the variation of a (anti-) self-dual field will have a contribution from the
variation of the Hodge star. This contribution is the opposite duality of the field with
respect to the unperturbed metric.

To find an explicit coordinate expression for this contribution, let us turn to the

case at hand, where dg,, = ¥,,. Our conventions take condition (D.1) as
1 op oo’
wl“’ = :*:5\/56#1/1009 q wplo./’ (D4)
where /g = y/det g,,. Our Levi-Civita symbol has no metric dependence, and

774 ! oo’ vpo
ggﬂﬂg gppg Eu'vip'ol = e s (D5)
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Further, we will often use
P € e = 52(5f,’5g — 6,00) — 5/’;(655‘7’ — 63&) + 55((55&; - 655§). (D.6)

Conventions settled, we need to lift the differential of Hpig, (x)(Met(X)) to the total
space of the projected bundle Q2*(X) over Met(X). Since the projection depends
continuous on the metric, this bundle is non-trivial, unlike the unprojected bundle

02(X). Therefore, the lift of d, denoted d will be a projection connection.*® We have
1 o Y, , o
(dx)w = 5\11 oWuw F /G€pvpe ¥ w7 (D.7)

Note that

U7 ,wye = —5\11 oWy £ éﬂewmw Wy !, (D.8)

which follows from the identity
V€AY B, = £A°,B,, £ 2A%,B,,,, (D.9)

for any symmetric two-tensor A and (anti-) self-dual two-form B. In particular, we

find that
9 + 1 a 1 p oy
(U7 o)™ = _Z\I’ oWy £ 5\/§€ququ oW, (D.10)
(o2 1 (o
(\Ij [uwu]a>i = _Z\II oWy, (Dll)

where the raised signs indicate explicit projection to self-dual or anti-dual parts via

the projector (1 & %). Hence, we can satisfy (D.3) by adding —(¥7,w,j,)T to the

46For more on the importance of projected connections in physics, do not overlook [69]
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variation of w. All together, we arrive at we have
dwp = (dw)® — (U7 0,00)F, (D.12)

where we have denoted the lift of d to the total space of the bundle Q?(X) over MetX
with the same symbol, as it is canonical. In our conventions, we assume that all
unconstrained differential forms have no metric dependence, and thus dw = 0, and

we end up with

de = —(\IJU[MW,,]U):F. (D13)

The story is different if we are varying the (anti-) self-dual part of an otherwise
unconstrained two-form field. For example, we will encounter the variation of F}.
Since F4 has both self-dual and anti-self-dual components, we can’t immediately
leap to (D.13). Instead, in complete generality, suppose we have an unconstrained

two-form field w € Q?(X). Then

1 1
d(wi:u) =d (Ewuu + Z\/geuupawpa> )

1

1 / o.o,/
5 (deww) £ Z\/geuvmgpp 9% dwpy o

1 1 / O.o,/ / o.a./
+ 5\/56#,,[,0 (Z\Iﬂ,ygpp g%7 — WPy > Wy

1 1
— (dw)fy + 5\/56;”/,;0 (Z\If/’y(wpff,—l- + @) = P (7 4 w'ya,—))

= F(Vpw,,)” + (Pp@,,)" (D.14)

o v]o

where we have again used dew = 0. Note that if wT = 0, this reproduces (D.13).
Turning to the square d2 on w € Q2*(X) and d* on w € Q*(X), there is an

incredibly important difference. Specializing to the self-dual projection of interest,
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we can compute

1 ! oo’
,lW = \/_e/wpa ~ (Z\IJTTQ o’ gaa PP g ) Wolor

1 1 v e 00 eHe o' &P o0
+ 5\/56111/,00 2(V ®,)g — (VPO 4+ VP dP)g Wpor
1 1 (D.15)

+ 5\/56/“,,00 (5\1177@,@ gog + PP oo ) @yt

1 1 MNaP? o PHP P Hr) e
= 5\/5%14)0 é(vvq) Vg7 g% — (VPDP 4+ VP dF)g Wyt
This coincides with the expectation that d> = L, as the final line is the Lie derivative

of the Hodge star operator. On the other hand, we have

P = f( (V,®7)g” g7 <VP<1>P’+VP’<1>0>9“’) e
(D.16)

1 / O_OJ -~
- 5\/§€uypa (Z 79 o gaa prp g ) d(JJp/g/.

Here, we encounter a new term in the second line, resulting from the fact that w €

Q2*(X) as opposed to Q*(X). In a lengthy but important computation

~ 1 1 o\~
(dgwuu)\ll\ll = ——\/gé,wpa (_ ~9 o’ g(w per gUU ) du}plax
1 vy pp 00 pp' oo
= \/_G;U/pa \IJ 799 -V g
1 ! !
X (5\/5610’0’)\7' (Z g g — M g ) wxx) (D.17)

1 / ! / I ! ! ! /
oo’ 1T AA AN oo’ 1T
= _Egeul/paep’a’AT (_gpp g g \IJ’YV\II + g g g \Ijnnwpp ) TIN 7!
]_ ! ! / !
oo’ 1T AN
- Z_Lgeuupaep’o’ATg g vPr TN !
1
TANT oNT oNT
= 1—66,“,/)0 (ep U U\ "y, — €17 WP oy, — 4 \prn\lf,\vww)

_%6(55@35; — 578)) — 6X(8267 — 8768) + 67 (508) — 5267))
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1
x (W7, 0"y, + 40" W)\, ) + 5(5255 — 6,000, Us D,
1 g g g
=—7 (v, w,, — V¥, @y, — V¥, w,,

+V° V%, + VP, w,, — VU, w,,)
1 1 1

— ZL\IJUU\I]p[#wV}P — g\IjUU\I]puwl/p -+ g\I;UU\Ppl/w,up
1 o 1 o 1 o
= _5\11 o V1T + 5\11 o V1T + §\Pp Volu@o)o
1 o
et §\pr \ij[uwl/}o" (D18)

All told, we find

EPWW = %\/ngpg <%(vv®’y)9pp/gog/ - (qu)p/ + vp/q)p)gwl) Xp'o' t %\I/pg\pp[uxl']a'
(D.19)
For our theory, the extra final term will be compensated by the Ay differential. We
also recognize it as the curvature of the projection connection, and its existence leads
us to conclude that the self-dual condition is inconsistent with the diffeomorphism
Cartan model alone and requires the combined gauge and diffeomorphism model. In
other words, modules with self-dual fields cannot be constructed for Hpi, (x)(Met(X))
but can be for Hg(M).
It is instructive to see how this leads to the correct algebra for our Cartan model.
We have the very important

Qw;:i:y = (Qw);fu :F (\Da[ﬂwz—/ﬁg)_ :i: (\IIU[Nw_J)+' (DQO)

V]

Taking a second action of Q, we obtain

Q@) = Q@) F (¥ L(Qw);),) "~ + (¥LQw);,,)"
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FQ (WUWWJJ - (‘I’”[uw;]g)+> : (D.21)

After a series of Levi-Civita contractions and spliting into self-dual and anti-self-dual

components, the final term above can be computed as

Q (U myi,)” = (W my,)*) = = (W7(Q),) " + (97,(Qw);,,)*

1
+ 5\/gemﬁ(vaqff)waﬁ
(D.22)

1 g g
— (V%)@ + (V,0%)),)

—_

+ 5 (Va0 + (V,07),,).

We then obtain

g

1
b, F 5V Fwas (V07

o o 1 o — o -
(Vu®%)eg, + (Vo ®7)w,) F 5 (Vi) + (Vo d)w,,),

QQ’wiy = (Q2

H-
N | —

A 1 aFo
+ (L5 ®)ie, F 5VGeuas (VO 2%)w,”

I
—~

%)
©-
3
TH

H
| —

o o 1 o\ __— o\ —
(Vu®%)eg, + (Vi ®%)w,) F 5 (Vi) + (Vo )w,,),

D + (LY

|
—~
%)
©-
g

(D.23)

We thus see that the extra terms are precisely those that change the (anti-) self-dual

part of the gauge covariant Lie derivative of w to the gauge covariant Lie derivative

of w™.
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E Various Computations

E1 (07 (Y o0 )T = =507, x000

First, recall that

1 1
(Y7 uXu)o)” = _Z\I’ o X T 5\/§6qu0@va70 (E.1)
so that

. B . 1 1 *
(U7 (PP X)) = (‘1’ [ <—Z\1!prgy] + 5\/§6¢r|um‘1’76x&>)

. . (E.2)
= Z‘I’pp(‘w[uxu]af + 5\/§(€a[u\m‘l’gu]\lﬂax&)+
The first term above vanishes, as
o + 1 o
(\If [,uXV}U) = —Z\If UX/“,. (E3)

Next, we employ the self-duality of x, and contract anti-symmetric tensors to find

1 - - +
5\/5(@,@”,\\1/ u]‘lﬂéXM)Jr = (EU[VWJE&W\D u]\I’/\éva) )

N — N = ] =

(0,280,105 — 8,700, °65" + 6,707,083 07, U2 0 5x,,)

g g g +
(\I] WY Xl = VY X + W [M\PpﬂXU\V]) :

(E.4)

Above, the second term vanishes due to a cycle of antisymmetric conditions and the

third term vanishes for the same reason the earlier trace term vanished. This leaves
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us with

(oa — 1 g
(\D [u(qlp[UXVHP) )+ = _§<\I]p \IIU[MXV]P>+' (E5)

Here, the self-dual projection on the right hand side is redundant, as, for any anti-

symmetric tensor Ap,,), we have

1 o 1 o
5\/56/11/)\7714 )\XWU = ZG,uzx)\nG nwaA}\oX'y&

1
= (676785 — 515783 + 50063 A e,

nov

1 1 1 (E.6)
= §AAuXV)\ - iA)\l/X/J)\ + §A/\)\X/.Ll/7
= A%uXoo
So we conclude,
o P —\+ 1 po
(\I[ [u(\lj [UXVHP) ) = _5\11 \Pp[uXu}a- (E7)

E.2 {d K\H=—{d, Ay}H

Here we provide proof of the relation (1.150). We will work rather methodically given
the immense number of terms in the computation. In order to reduce the complexity,
we begin by working in a presentations of our transformations that do not contain
self-dual or anti-self-dual projections. Therefore we can use the various identities of
Appendix D to express ax, dH , and KH explictly withouth any self-dual or anti-self-

dual projection operators. We have

dxuw = _(\I/J[MXV}U)_
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dH;w = —(‘I’U[HHV}U)f

o ]' [ea
=~V Hyp — V7o Hy, (E.9)

and

KHy = ® DX + (Vu®) Xow + (Vo @) Xpuo) "
= 7 Do+ 5 (T ) ow + 5 (V) + 5 Gepung V2o
= 07D, X + %(qu)a)Xau + %(Vvq)g)X/w + iEMV/\WEUm&qu)UXW
= O Dy Xy + %(V,ﬂ)")xw + %(Vwb")x,m
+ %(55535§ — 818785 + 815505 V Py x5
= O Dyxyw + %(VHCD")XW + %(Vl,@”)x,w + %(V"@M)XW
= (77 + 5(Vo )i

1 1 1
= @UDUXMV + §(VU(DU)XMV - §(VM(DU - VU(I)M)XVU + E(VV(DU - VU@V)XIM'

(E.10)
We then start with first side of the relation as
9 9 1 po o 1 o
{d, AH}H,U,V = d —5\11 \IJ,D[MXV}U + AH _\IJ[’LLHV]O' — Z\I/ O'H[LV (El].)
1 o o 1 g
— —§(V”<I> +V q)p)\I!p[MXV]U + §\pr (VPCD[H + V[“Cbp)xy]g
1. 1
- Z\I/p \iju(_\pv[VXah - Z\IJ’Y’YXVO')

1 1
+ Z\ij Vo (=07 X o)y — Z\Iﬂ'yxucr)

- 1\11 p P o1 Xy + Z\IJ VW o Xoly — g\lﬂw\pp YoluXvlo

1 . 1 peo
= =5 (VP07 + VIO W pxe + 5 (V0 + Viu®y)xao
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1 . 1 - 1
+ 1_6\1177\“ Vo Xvo — 1_6\1177@[) Vo Xpo — g\Iﬂy\Pp[qu]g

(E.12)

+ ZL\IJP Vo U7 Xoly — Z\I’p Vo U7 Xo)y — 1\1' p U o X o]y
1 o
+ Z‘IJ L P

1 g g 1 lod
= —é(V”CI) + VIOV 1, X0 + 5‘11” (V@ + V@) xue-  (E.13)
Next, we break {E, K}H,, into parts. First, we find

T o 1 g
(Kd)H,,, = K (_ e — v C,HW>

1
5 (vu} or — Vp(I)l/] )Xap

1
= \I/U[u (q)prXV}U + §<vﬂ®p)XV]a -
1
+§<ng)p - qu)a)xy]p>
Lo p 1 P 1 P p
+ Z\P o ¢ DPXIW + §(Vp¢) )X/w - §(VM(I) -V (I)M)Xup
1
+§(VV(I>” — Vp<I>V)XW)

(E.14)

For the other direction, we compute the action of d on each individual term of KH s -

Additionally, for the first time, we will need to vary the metric connection. It satisfies

1
=V,¥,.), (E.15)

dFPW = ng(V(M\IfV)U — 5

where we use parentheses in our indices to indicate symmetrization. This leads to
q g g 1
d(V,®7) = g7 (Vu¥p)y — §v7\11up)q)p> (E.16)

1
d(V,®,) =¥, Vo® + (Vi VU, — EVM\I/Up)CI)”, (E.17)
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d(V,3%) = %(quﬂg)cpﬂ. (F.18)

Term by term, we find

1 ~ ~
d(®° Doxyw) = 7D, (—\I/p[ux,,]p — Z—L\If”pxw) — ®7(dI )Xo — P7(AI700) X pp

g 1 g g
= =7V, Do Xy — Zq) U2 Do Xy — D7 (Vo U ) Xulp

1 1
- Z(D (vd\ppp)X/W o (I)p(gp’y(v(a\lju)'y - EV’Y\I;UN))X/)V

— d7(g" (VoW — %vw‘yov))XW
= —V7L(®"Doxu)o) — iqlga(q)prXuv)
)8 — B (VW)
BT Dy + (V) + 58 (T, s
= BT o+ 5V ) — 50TV
= VD) = TV (B D) — (V078
+ (V[M\IIUP)CDUXV]p - (VP\IJU[MCI)UXVJP>
(E.19)

(1. 1 1 |
(552070 ) = (T 000+ LT T~ )
1

4(Vp\11 a)q)pX;w -V [u(qu)p)Xu]a - =¥ a(qu)p)xuw

2 1
(E.20)
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/1 . 1, 1
d (—i(vuq) )Xua> = —§(g T(Ve¥y — §qu]up>®pxw)
1 " N 1.
- §(qu’ )=V Xoly — Z\I’ +VXvo)
1 o 1 o 1 g
= —Z(Vu\l’gp)q) X" — ZL(VU\IIHP)(I) X"+ Z(VP\II#U)(I) X"
1 1
+ §\I’J[u(vu®p)Xp}a + g\paa(vu@p)va
(E.21)

~ (1 1 1 1
d (§(VV(I)U)XMU) = Z(vquap)q)UXup + Z(va\pup)q)ax;/) - Z(vp\pua)q)ax,up (E )
.22

1. 1.
- Q\P [u(vvq)p)Xp]U - g‘lj U(VVCD”)XW,
1

~(1 1 1
d <§(VU®M)XVU) = §(qjupv0q)p + (V(U\PP)M - §vu\1/op)q)p)Xua - §\I/Up(vch)u)Xup

1 " 1
+ i(voq)u)g p(_\Iﬂ[uXph - ZL\IHVXVP)
1. 1. 1.
= 5\11 w(VP®5) X — Z‘If P(Vo®u)Xup — Z\IJ (V@)X o

1 1 1
- g\poo(vp@u)xup + Z(qujau)q)OXup + Z(VU\PML)(I)UXVF)

1
- Z(VM\IJW))(I)UXV’)‘

(E.23)

It 1 o 1 o p 1 op

d _§<VU®V)XM = —5\1/ ,,(V (I)U)XMU + Z_L‘ll (VU¢V)XMP
1 1
+ =07 (V,D,)x"s + =V, (V,D,)x

I 4 8 14 (E24)

4

1 oo p 1 oo p
- Z(VP\IJUVM) Xp — Z(va@/w)q) Xu

1

+ Z(VI,\I/U,))CI)"X“’).
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Collecting (E.21)-(E.24), we find

d (=(V®2 )Xo + (VoP)xi)7) = =(ViuWop) 27X + (V) Wor) %X,

1,1
— V(5 (V= VPP,

1
+ 5 (Vu®” = VI, )Xpi0) + SV (Vi 27) Xy

VP (Vu®)Xujo + V71 (VIPo) X0

N~ N~ DN =

g 1 g
\ [N(V"(I)V})Xgp - 5\1’ p(vaq)[u)x,,]p.

(E.25)

All the pieces together gives

(dK)HpV =V [u(q)prXu]a) - Z\II a(q)prX;w) - §\Ij [u(qu)p)Xu]a
1_. 1 1
- Z\I’ a((qu)p)X/w - §(qu)p - Vp(pu)XVp + §(VV<I>'O - qu)u)XW)
o 1 1
+v [M(E(vu]q)p)Xcrp + (vp(Da)Xu]p - §<qu)u})XUp)
1

- E\Iﬂp((v[u@p) + (qu)[u))Xu]o-
(E.26)
This finally gives us
~ 1 1
{d,K} = —E\IJW(V[M@p + V, @) x00 + §\If“[M(Vpd>U + Vo @)Xy, (E.27)

Thus, comparing this to (E.13), we see that, indeed

{d,K}H = —{d, Ay} H. (E.28)
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F Exact + Non-exact Splitting of ,/gCir

For the purposes of understanding the action of superconformal tensor calculus, we
can write the unbarred half the S' as a entirely non-exact part plus the exact part.

This is given by

d =Q(V+A)+C, (F.1)

anti-chiral

where is V of (2.7) A of (2.70) and C is (2.3.2). Explicitly written in the “t” fields,
we have
0
/ d*r\/g { T(Ey + Dy, )x" — 21, Via + 8—T¢L¢f,x“" — 7(V®y)ax"”
a
V— g 174 87— [ 174
—27®* X/wv a+2 (I) ¢ XO'VXM + %(qu) XU}LXpVXM

_ 0T - 20T o y
A= /Xd‘lx\/g |:2T(I)MXM,,VVCL+ %QDPXWX “wz §a—(1>”(1> XouXov X" } (F.3)

and

1 0
12 0a2¢

107

4 vafB it ot vafB,t, /.t ot vaB, 1ttt
€= /xd [4€M FiFas = 555" VatoFas + T3 52" Yutudbats

+gewﬁFt V() + 7"V, (8,) Vo (D7)

aT ra o aT rax o —
~ 22 PO Xty Fras — 25,¢" K S ERUANC P10

107 or

vafS o

394 ZvaBprdp XpuXUVFa6+ 5a
1P s 1 0%

+__€M ’o XJMZ}Z@Z}ZéwEa 29a2

3 da?
1 02 /.LZ/O(,B o p v t
+§W o XU;LCI) Xpl/q) Xvawﬁ (F4)

e“”aﬁq)’@ XpuXov Via(Psa)

uyaﬂ(anau¢pou¢t ¢ﬁ
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There are simplifications upon adding V and A. We find

1 5 . or ,
V+A= /Xd‘lx\/gj |:—§T(F/E;,+ + D}, X" — 214, Via + %wzwix”
., OT " 107 - .
—7(V @) ax" — %q)pooX Hapy + 5%@% XpuXovX"
(F.5)
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